本文整理汇总了Python中matplotlib.mlab.frange函数的典型用法代码示例。如果您正苦于以下问题:Python frange函数的具体用法?Python frange怎么用?Python frange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了frange函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plot
def plot(self, policy):
rows = len(policy)
cols = len(policy[0])
X,Y = meshgrid(range(rows), range(cols))
# U, V give the x and y components of the arrow vectors
U = [[0]*cols for _ in range(rows)]
V = [[0]*cols for _ in range(rows)]
for row,r in enumerate(policy):
for col,c in enumerate(r):
a = c[0]
if a == 'N':
U[row][col] = 0
V[row][col] = 1
elif a == 'S':
U[row][col] = 0
V[row][col] = -1
elif a == 'E':
U[row][col] = 1
V[row][col] = 0
elif a == 'W':
U[row][col] = -1
V[row][col] = 0
else:
raise ValueError
ax = self.fig.add_subplot(111)
ax.quiver(X, Y, U, V, pivot='middle')
ax.grid(linestyle='-')
ax.set_xticks(frange(0.5, cols))
ax.set_yticks(frange(0.5, rows))
ax.set_xticklabels([])
ax.set_yticklabels([])
xmin, xmax, ymin, ymax = ax.axis()
ax.axis([xmin-0.5, xmax-1, ymin-0.5, ymax-1])
if self.world:
#map =
cdict = {'blue': ((0.0, 0.2, 0.2),
(0.25, 1, 1),
(1.0, 0, 0)),
'green': ((0.0, 0.2, 0.2),
(0.25, 1, 1),
(1.0, 1, 1)),
'red': ((0.0, 0.2, 0.2),
(0.25, 1, 1),
(1.0, 0, 0)) }
cmap = LinearSegmentedColormap('fudge', cdict)
ax.imshow(self.world, cmap=cmap, interpolation='nearest')
开发者ID:okkhoy,项目名称:gabe-and-joh,代码行数:56,代码来源:graph.py
示例2: Draw
def Draw(func1, func2):
# генирация точек графиков
xlist = mlab.frange(a, b, 0.01)
ylist = [func1(x) for x in xlist]
ylist2 = [func2(x) for x in xlist]
# Генирирум ось
y0 = [0 for x in xlist]
#############################################################
max1Y = max(ylist)
min1Y = min(ylist)
max2Y = max(ylist2)
min2Y = min(ylist2)
minmaxarrayY = []
minmaxarrayX = []
for i in range(len(ylist)):
if ((max1Y == ylist[i]) or (min1Y == ylist[i])):
minmaxarrayY.append(ylist[i])
minmaxarrayX.append(xlist[i])
for i in range(len(ylist2)):
if ((max2Y == ylist2[i]) or (min2Y == ylist2[i])):
minmaxarrayY.append(ylist2[i])
minmaxarrayX.append(xlist[i])
################################################################
extremumX, extremumY = converter(korn, 0, 3, 4, func1)
inflectionX, inflectionY = converter(korn1, 0, 3, 4, func1)
kornsX, kornsY = converter(table, 1, 3, 4, func1)
pylab.plot(extremumX, extremumY, 'go', label='extremum', color='red')
pylab.plot(inflectionX, inflectionY, 'go', label='inflection point', color='yellow')
pylab.plot(minmaxarrayX, minmaxarrayY, 'go', label='min/max', color='green')
pylab.plot(kornsX, kornsY, 'go', label='Korn', color='black')
pylab.plot(xlist, ylist, label='$sin(x)/x$')
pylab.plot(xlist, y0, color='pink')
pylab.plot(xlist, ylist2, label='$0.02*x* x - 4$', color='pink')
pylab.legend()
# Включаем рисование сетки
pylab.grid(True)
xlist1 = mlab.frange(float(table2[0][3]), float(table2[len(table2) - 1][3]), 0.01)
pylab.fill_between(xlist1, [func1(x) for x in xlist1], [func2(x) for x in xlist1], color='green', alpha=0.25)
# если мало разбиений, то переопереляем сетку под шаг
if ((round((b - a) / h)) < 25):
pylab.xticks([a + i * h for i in range(round((b - a) / h) + 1)])
print()
print()
print("Минимумы и максимумы:")
print("X", "Y", sep="\t")
for i in range(len(minmaxarrayY)):
print('{:3.5g}'.format(minmaxarrayX[i]), '{:3.5g}'.format(minmaxarrayY[i]), sep='\t\t')
# Рисуем фогрму с графиком
pylab.show()
开发者ID:medva1997,项目名称:bmstu_sem2,代码行数:56,代码来源:lab3.py
示例3: box_grid
def box_grid(xlimp, ylimp):
"""box_grid generate list of points on edge of box
list = box_grid([xmin xmax xnum], [ymin ymax ynum]) generates a
list of points that correspond to a uniform grid at the end of the
box defined by the corners [xmin ymin] and [xmax ymax].
"""
sx10 = frange(xlimp[0], xlimp[1], float(xlimp[1]-xlimp[0])/xlimp[2])
sy10 = frange(ylimp[0], ylimp[1], float(ylimp[1]-ylimp[0])/ylimp[2])
sx1 = np.hstack((0, sx10, 0*sy10+sx10[0], sx10, 0*sy10+sx10[-1]))
sx2 = np.hstack((0, 0*sx10+sy10[0], sy10, 0*sx10+sy10[-1], sy10))
return np.transpose( np.vstack((sx1, sx2)) )
开发者ID:03013304Huangyiting,项目名称:python-control,代码行数:15,代码来源:phaseplot.py
示例4: showF
def showF():
'''Utility function to show F distributions'''
t = frange(0, 3, 0.01)
d1s = [1,2,5,100]
d2s = [1,1,2,100]
for (d1,d2) in zip(d1s,d2s):
plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1,d2))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outDir = r'..\Images'
outFile = 'dist_f.png'
saveTo = os.path.join(outDir, outFile)
plt.savefig(saveTo, dpi=200)
print('OutDir: {0}'.format(outDir))
print('Figure saved to {0}'.format(outFile))
plt.show()
plt.close()
开发者ID:fluxium,项目名称:statsintro,代码行数:27,代码来源:figs_DistContinuous_multi.py
示例5: showChi2
def showChi2():
'''Utility function to show Chi2 distributions'''
t = frange(0, 8, 0.05)
Chi2Vals = [1,2,3,5]
for chi2 in Chi2Vals:
plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
plt.legend()
plt.xlim(0,8)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
outDir = r'..\Images'
outFile = 'dist_chi2.png'
saveTo = os.path.join(outDir, outFile)
plt.savefig(saveTo, dpi=200)
print('OutDir: {0}'.format(outDir))
print('Figure saved to {0}'.format(outFile))
plt.show()
plt.close()
开发者ID:fluxium,项目名称:statsintro,代码行数:25,代码来源:figs_DistContinuous_multi.py
示例6: showT
def showT():
'''Utility function to show T distributions'''
t = frange(-5, 5, 0.05)
TVals = [1,5]
normal = stats.norm.pdf(t)
t1 = stats.t.pdf(t,1)
t5 = stats.t.pdf(t,5)
plt.plot(t,normal, '--', label='normal')
plt.plot(t, t1, label='df=1')
plt.plot(t, t5, label='df=5')
plt.legend()
plt.xlim(-5,5)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
outDir = r'..\Images'
outFile = 'dist_t.png'
saveTo = os.path.join(outDir, outFile)
plt.savefig(saveTo, dpi=200)
print('OutDir: {0}'.format(outDir))
print('Figure saved to {0}'.format(outFile))
plt.show()
plt.close()
开发者ID:fluxium,项目名称:statsintro,代码行数:30,代码来源:figs_DistContinuous_multi.py
示例7: showExp
def showExp():
'''Utility function to show exponential distributions'''
t = frange(0, 3, 0.01)
lambdas = [0.5, 1, 1.5]
for par in lambdas:
plt.plot(t, stats.expon.pdf(t, 0, par), label='$\lambda={0:3.1f}$'.format(par))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outDir = r'..\Images'
outFile = 'dist_exp.png'
saveTo = os.path.join(outDir, outFile)
plt.savefig(saveTo, dpi=200)
print('OutDir: {0}'.format(outDir))
print('Figure saved to {0}'.format(outFile))
plt.show()
plt.close()
开发者ID:fluxium,项目名称:statsintro,代码行数:26,代码来源:figs_DistContinuous_multi.py
示例8: shifted_normal
def shifted_normal():
'''PDF, scatter plot, and histogram.'''
# Generate the data
# Plot a normal distribution: "Probability density functions"
myMean = [0,0,0,-2]
mySD2 = [0.2,1,5,0.5]
t = frange(-5,5,0.02)
sns.set_palette('husl', 4)
for mu,sigma in zip(myMean, np.sqrt(mySD2)):
y = stats.norm.pdf(t, mu, sigma)
plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
plt.legend()
plt.xlim([-5,5])
plt.title('Normal Distributions')
outFile = 'Normal_Distribution_PDF.png'
saveTo = os.path.join(outDir, outFile)
plt.savefig(saveTo, dpi=200)
print('OutDir: {0}'.format(outDir))
print('Figure saved to {0}'.format(outFile))
plt.show()
# Generate random numbers with a normal distribution
myMean = 0
mySD = 3
numData = 500
data = stats.norm.rvs(myMean, mySD, size = numData)
plt.scatter(np.arange(len(data)), data)
plt.title('Normally distributed data')
plt.xlim([0,500])
plt.ylim([-10,10])
plt.show()
plt.close()
开发者ID:hendryliu,项目名称:statsintro,代码行数:34,代码来源:figs_DistributionNormal.py
示例9: Draw
def Draw(func1, func2):
# генирация точек графика
xlist = mlab.frange(a, b, 0.01)
ylist = [func1(x) for x in xlist]
ylist2 = [func2(x) for x in xlist]
# Генирирум ось
y0 = [0 for x in xlist]
pylab.plot(xlist, ylist)
#pylab.plot(xlist, y0, label='line1', color='blue')
pylab.plot(xlist, ylist2, label='$sin(x)/x)$', color='red')
pylab.legend()
# Включаем рисование сетки
pylab.grid(True)
pylab.fill_between(xlist, ylist, ylist2, color='green', alpha=0.25)
# если мало разбиений, то переопереляем сетку под шаг
if ((round((b - a) / h)) < 25):
pylab.xticks([a + i * h for i in range(round((b - a) / h) + 1)])
# рисуем корни, промерка того что корень не содержит ошибок
for i in range(1, len(table)):
if (table[i][4] != ':-('):
pylab.scatter(table[i][3], table[i][4])
# Рисуем фогрму с графиком
pylab.show()
开发者ID:medva1997,项目名称:bmstu_sem2,代码行数:27,代码来源:roots_search.py
示例10: __init__
def __init__(self, name='drawSinus'):
print name, 'started!\n'
# Интервал изменения переменной по оси X
self.xmin = -20.0
self.xmax = 20.0
# Шаг между точками
self.dx = 0.01
#Создадим список координат по оси X
#на отрезке [-xmin; xmax], включая концы
self.xlist = mlab.frange (self.xmin, self.xmax, self.dx)
开发者ID:MakSim345,项目名称:Python,代码行数:10,代码来源:drawSinus_2.py
示例11: skewness
def skewness(ax):
'''Normal and skewed distribution'''
t = frange(-6,10,0.1) # generate the desirded x-values
normal = stats.norm.pdf(t,1,1.6)
chi2 = stats.chi2.pdf(t,3)
ax.plot(t, normal, '--', label='normal')
ax.plot(t, chi2, label='positive skew')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.legend()
开发者ID:Mistobaan,项目名称:statsintro,代码行数:12,代码来源:figs_Skewness.py
示例12: test
def test():
min, max, dx = 0, 16, 0.01
for d in containerDot:
a = listA(d)
b = listB(d)
h = np.linalg.solve(a, b)
h = list(h)
xlist = mlab.frange(min, max, dx)
ylist = [f(x) for x in xlist]
yrlist = [g(x, h) for x in xlist]
pylab.plot(xlist, yrlist)
pylab.plot(xlist, ylist)
pylab.show()
开发者ID:HigerSkill,项目名称:Algorithms,代码行数:14,代码来源:approximation.py
示例13: CheckElevation
def CheckElevation(vec):
#print vec
step = 1.0/len(vec)
vec_after_polyfit = createElevationVectorAfterPolyfit(mlab.frange(0,1-step,step),vec)
vec_diff = np.diff(np.array(vec_after_polyfit))
elChange = vec_after_polyfit[-1] - vec_after_polyfit[1];
if (elChange > ELEVATION_THRESHOLD):
#print 'DOWN'
if (mlab.find(vec_diff >= 0).size > VECTOR_SIZE*ELEVATION_TREND_PRECENT):
return elChange,HAND_DOWN
elif (elChange < -ELEVATION_THRESHOLD):
#print 'UP'
if (mlab.find(vec_diff <= 0).size > VECTOR_SIZE*ELEVATION_TREND_PRECENT):
return elChange,HAND_UP
return 0,HAND_UNKWON
开发者ID:amiravni,项目名称:Magic-Platform,代码行数:15,代码来源:gem.py
示例14: kurtosis
def kurtosis(ax):
''' Distributions with different kurtosis'''
# Generate the data
t = frange(-3,3,0.1) # generate the desirded x-values
platykurtic = stats.laplace.pdf(t)
wigner = np.zeros(np.size(t))
wignerIndex = np.abs(t) <= 1
wigner[wignerIndex] = 2/np.pi * np.sqrt(1-t[wignerIndex]**2)
ax.plot(t, platykurtic, label='kurtosis=3')
ax.plot(t, wigner, '--', label='kurtosis=-1')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.legend()
开发者ID:Mistobaan,项目名称:statsintro,代码行数:16,代码来源:figs_Skewness.py
示例15: __call__
def __call__ (self) :
binner = self.binner
delta = self.delta
phase = self.phase
vmin, vmax = self.viewInterval
wmin = binner.value (vmin, False)
wmax = binner.value (vmax, False)
if phase is not None :
wmin -= (wmin % delta - phase)
return \
[ i for i in
( binner.index_f (v)
for v in frange (wmin, wmax + 0.001 * delta, delta)
)
if vmin <= i <= vmax
]
开发者ID:Tapyr,项目名称:tapyr,代码行数:16,代码来源:Bin_Locator.py
示例16: showChi2
def showChi2():
'''Utility function to show Chi2 distributions'''
t = frange(0, 8, 0.05)
Chi2Vals = [1,2,3,5]
for chi2 in Chi2Vals:
plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
plt.legend()
plt.xlim(0,8)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
outFile = 'dist_chi2.png'
C2_8_mystyle.printout_plain(outFile)
开发者ID:akansal1,项目名称:statsintro_python,代码行数:17,代码来源:C5_6_distContinuous.py
示例17: showExp
def showExp():
'''Utility function to show exponential distributions'''
t = frange(0, 3, 0.01)
lambdas = [0.5, 1, 1.5]
for par in lambdas:
plt.plot(t, stats.expon.pdf(t, 0, par), label='$\lambda={0:3.1f}$'.format(par))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outFile = 'dist_exp.png'
C2_8_mystyle.printout_plain(outFile)
开发者ID:akansal1,项目名称:statsintro_python,代码行数:18,代码来源:C5_6_distContinuous.py
示例18: showF
def showF():
'''Utility function to show F distributions'''
t = frange(0, 3, 0.01)
d1s = [1,2,5,100]
d2s = [1,1,2,100]
for (d1,d2) in zip(d1s,d2s):
plt.plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1,d2))
plt.legend()
plt.xlim(0,3)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.axis('tight')
plt.legend()
outFile = 'dist_f.png'
C2_8_mystyle.printout_plain(outFile)
开发者ID:akansal1,项目名称:statsintro_python,代码行数:19,代码来源:C5_6_distContinuous.py
示例19: showWeibull
def showWeibull():
'''Utility function to show Weibull distributions'''
t = frange(0, 2.5, 0.01)
lambdaVal = 1
ks = [0.5, 1, 1.5, 5]
for k in ks:
wd = stats.weibull_min(k)
plt.plot(t, wd.pdf(t), label='k = {0:.1f}'.format(k))
plt.xlim(0,2.5)
plt.ylim(0,2.5)
plt.xlabel('X')
plt.ylabel('pdf(X)')
plt.legend()
outFile = 'Weibull_PDF.png'
showData(outFile)
开发者ID:ChengduoZhao,项目名称:statsintro_python,代码行数:19,代码来源:ISP_distContinuous.py
示例20: shifted_normal
def shifted_normal():
'''PDF and scatter plot'''
# Plot 3 PDFs (Probability density functions) for normal distributions ----------
# Select 3 mean values, and 3 SDs
myMean = [0,0,0,-2]
mySD = [0.2,1,5,0.5]
t = frange(-5,5,0.02)
# Plot the 3 PDFs, using the color-palette "hls"
with sns.color_palette('hls', 4):
for mu,sigma in zip(myMean, np.sqrt(mySD)):
y = stats.norm.pdf(t, mu, sigma)
plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
# Format the plot
plt.legend()
plt.xlim([-5,5])
plt.title('Normal Distributions')
# Show the plot, and save the out-file
outFile = 'Normal_Distribution_PDF.png'
showData(outFile)
# Generate random numbers with a normal distribution ------------------------
myMean = 0
mySD = 3
numData = 500
data = stats.norm.rvs(myMean, mySD, size = numData)
# Plot the data
plt.scatter(np.arange(len(data)), data)
# Format the plot
plt.title('Normally distributed data')
plt.xlim([0,500])
plt.ylim([-10,10])
plt.show()
plt.close()
开发者ID:ChengduoZhao,项目名称:statsintro_python,代码行数:40,代码来源:ISP_distNormal.py
注:本文中的matplotlib.mlab.frange函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论