• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python mlab.csv2rec函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中matplotlib.mlab.csv2rec函数的典型用法代码示例。如果您正苦于以下问题:Python csv2rec函数的具体用法?Python csv2rec怎么用?Python csv2rec使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了csv2rec函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: makediffs

def makediffs(models = _allmodels, verbose = False, kpp = True):
    for model in models:
        model = os.path.splitext(os.path.basename(model))[0]
        if kpp:
            kppdat = csv2rec(os.path.join(model, model + '.dat'), delimiter = ' ')
        else:
            if model not in _modelconfigs:
                raise IOError('If KPP is not properly installed, you cannot run tests on mechanisms other than cbm4, saprc99, and small_strato.')
            kppdat = csv2rec(os.path.join(os.path.dirname(__file__), model + '.dat'), delimiter = ' ')
        pykppdat = csv2rec(os.path.join(model, model + '.pykpp.dat'), delimiter = ',')
        diff = pykppdat.copy()
        pct = pykppdat.copy()
        keys = set(kppdat.dtype.names).intersection(pykppdat.dtype.names)
        notkeys = set(pykppdat.dtype.names).difference(kppdat.dtype.names)
        notkeys.remove('t')
        for k in notkeys:
            diff[k] = np.nan
            pct[k] = np.nan
    
        for k in keys:
            diff[k] = pykppdat[k] - kppdat[k][:]
            pct[k] = diff[k] / kppdat[k][:] * 100
        diff['t'] = pykppdat['t'] - (kppdat['time'] * 3600. + pykppdat['t'][0])
        pct['t'] = diff['t'] / (kppdat['time'] * 3600. + pykppdat['t'][0]) * 100
        
        rec2csv(diff, os.path.join(model, model + '.diff.csv'), delimiter = ',')
        rec2csv(pct, os.path.join(model, model + '.pct.csv'), delimiter = ',')
开发者ID:barronh,项目名称:pykpp,代码行数:27,代码来源:test.py


示例2: extract_lai_fpar

def extract_lai_fpar(above_par_dat, below_par_dat):
    above_par_ra = mlab.csv2rec(above_par_dat)
    below_par_ra = mlab.csv2rec(below_par_dat)
    points_ra = mlab.csv2rec('lonlat_threet.csv')
    plot = below_par_ra['plot']
    date = below_par_ra['date']
    below_par = below_par_ra['par']
    lats = np.array(points_ra['latitude'].tolist()*2)
    lons = np.array(points_ra['longitude'].tolist()*2)
    above_par = []
    fapar = []
    for time in enumerate(date):
        par_idx = find_nearest_idx(above_par_ra['date'], time[1])
        above_par.append(np.mean((above_par_ra['par'][par_idx-1], above_par_ra['par'][par_idx],
                                 above_par_ra['par'][par_idx+1])))
        if above_par_ra['par'][par_idx] < below_par[time[0]]:
            fapar.append(0)
        else:
            fapar.append((above_par_ra['par'][par_idx] - below_par[time[0]]) /
                     above_par_ra['par'][par_idx])
    above_par = np.array(above_par)
    fapar = np.array(fapar)
    newra = np.column_stack((date, plot, lats, lons, above_par, below_par, fapar))
    new_ra = np.core.records.fromarrays(newra.transpose(),
                                        dtype=[('date', 'object'),
                                               ('plot', 'i'), ('lat', 'f'),
                                               ('lon', 'f'), ('above_par', 'f'),
                                               ('below_par', 'f'), ('fapar', 'f')])
    return new_ra
开发者ID:Ewan82,项目名称:ah_data,代码行数:29,代码来源:lai_cept.py


示例3: _make

 def _make(self, output_file, basin_poly, ba_csv, fa_ncons_csv, area_csv, arid_thresh=0.03, use_thresh=0.012, **kwargs):
     print "loading data"
     ba = np.genfromtxt(ba_csv,np.double,skip_header=1,delimiter=',')
     area_arr = mlab.csv2rec(area_csv)
     nc_arr = mlab.csv2rec(fa_ncons_csv)
     
     ids = ba[:,0]
     
     mean_ba = np.mean(ba[:,1:],1)
     ncons = gen_merge.arrange_vector_by_ids(nc_arr["ncons"],nc_arr["basinid"],ids).astype(np.double)
     area = gen_merge.arrange_vector_by_ids(area_arr["f_area"],area_arr["basinid"],ids).astype(np.double)
     
     wri = ncons/mean_ba
     
     miscmask = (ncons/area<use_thresh)*(mean_ba/area<arid_thresh)
     wri_s = self.score(wri)
     wri_s[miscmask] = MINSCORE
     wri_cat = self.categorize(wri_s, miscmask)
     
     
     joinarray = np.rec.fromarrays((ba[:,0],mean_ba,ncons,wri,wri_s,wri_cat),names=(BASIN_ID_FIELD,"BA","FA_NCONS",self.plot_field_name,"%s_s" % self.plot_field_name,"%s_cat" % self.plot_field_name))
     
     print "joining data"
     ap.CopyFeatures_management(basin_poly,output_file)
     ap.da.ExtendTable(output_file,BASIN_ID_FIELD,joinarray,BASIN_ID_FIELD)
开发者ID:fgassert,项目名称:aqueduct_atlas,代码行数:25,代码来源:gen_WRI.py


示例4: test_sanity

def test_sanity():
    from nipy.modalities.fmri.fmristat.tests import FIACdesigns

    """
    Single subject fitting of FIAC model
    """

    # Based on file
    # subj3_evt_fonc1.txt
    # subj3_bloc_fonc3.txt

    for subj, run, dtype in [(3, 1, "event"), (3, 3, "block")]:
        nvol = 191
        TR = 2.5
        Tstart = 1.25

        volume_times = np.arange(nvol) * TR + Tstart
        volume_times_rec = formula.make_recarray(volume_times, "t")

        path_dict = {"subj": subj, "run": run}
        if exists(pjoin(DATADIR, "fiac_%(subj)02d", "block", "initial_%(run)02d.csv") % path_dict):
            path_dict["design"] = "block"
        else:
            path_dict["design"] = "event"

        experiment = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "experiment_%(run)02d.csv") % path_dict)
        initial = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "initial_%(run)02d.csv") % path_dict)

        X_exper, cons_exper = design.event_design(experiment, volume_times_rec, hrfs=delay.spectral)
        X_initial, _ = design.event_design(initial, volume_times_rec, hrfs=[hrf.glover])
        X, cons = design.stack_designs((X_exper, cons_exper), (X_initial, {}))

        Xf = np.loadtxt(StringIO(FIACdesigns.designs[dtype]))
        for i in range(X.shape[1]):
            yield nitest.assert_true, (matchcol(X[:, i], Xf.T)[1] > 0.999)
开发者ID:yarikoptic,项目名称:NiPy-OLD,代码行数:35,代码来源:fiac_util.py


示例5: test_transform_data

def test_transform_data():
    """ 
    Testing the transformation of the data from raw data to functions 
    used for fitting a function.
    
    """
    # We start with actual data. We test here just that reading the data in 
    # different ways ultimately generates the same arrays. 
    from matplotlib import mlab 
    ortho = mlab.csv2rec(op.join(data_path, 'ortho.csv'))
    para = mlab.csv2rec(op.join(data_path, 'para.csv'))
    x1, y1, n1 = sb.transform_data(ortho)
    x2, y2, n2 = sb.transform_data(op.join(data_path, 'ortho.csv'))
    npt.assert_equal(x1, x2)
    npt.assert_equal(y1, y2)
    # We can also be a bit more critical, by testing with data that we 
    # generate, and should produce a particular answer:
    my_data = pd.DataFrame(
        np.array([[0.1, 2], [0.1, 1], [0.2, 2], [0.2, 2], [0.3, 1], 
                  [0.3, 1]]),
        columns=['contrast1', 'answer'])
    my_x, my_y, my_n = sb.transform_data(my_data)
    npt.assert_equal(my_x, np.array([0.1, 0.2, 0.3]))
    npt.assert_equal(my_y, np.array([0.5, 0, 1.0]))
    npt.assert_equal(my_n, np.array([2, 2, 2]))
开发者ID:amsjavan,项目名称:nazarkav,代码行数:25,代码来源:test_nazarkav.py


示例6: get_experiment_initial

def get_experiment_initial(path_dict):
    """Get the record arrays for the experimental/initial designs.

    Parameters
    ----------
    path_dict : dict
        containing key 'rootdir', 'run', 'subj'

    Returns
    -------
    experiment, initial : Two record arrays.

    """
    # The following two lines read in the .csv files
    # and return recarrays, with fields
    # experiment: ['time', 'sentence', 'speaker']
    # initial: ['time', 'initial']

    rootdir = path_dict['rootdir']
    if not exists(pjoin(rootdir, "experiment_%(run)02d.csv") % path_dict):
        e = "can't find design for subject=%(subj)d,run=%(subj)d" % path_dict
        raise IOError(e)

    experiment = csv2rec(pjoin(rootdir, "experiment_%(run)02d.csv") % path_dict)
    initial = csv2rec(pjoin(rootdir, "initial_%(run)02d.csv") % path_dict)

    return experiment, initial
开发者ID:GaelVaroquaux,项目名称:nipy,代码行数:27,代码来源:fiac_util.py


示例7: test_fractionate

 def test_fractionate(self):
     data1 = csv2rec('arch1.csv')
     data2 = csv2rec('arch2.csv')
     dl = [data1, data2]
     fr = fractionate(dl, (10, 10), (5, 5), ['row', 'column'])
     self.assertTrue(fr[0]['row'][3] == 5)
     self.assertTrue(fr[1]['column'][2] == 0)
开发者ID:ethanwhite,项目名称:macroeco,代码行数:7,代码来源:test_form_func.py


示例8: _make

 def _make(self, output_file, basin_poly, ba_csv, withdrawal_csv, consumption_csv, area_csv, arid_thresh=0.03, use_thresh=0.012, **kwargs):
     print "loading data"
     ba = np.genfromtxt(ba_csv,np.double,skip_header=1,delimiter=',')
     area_arr = mlab.csv2rec(area_csv)
     ut_arr = mlab.csv2rec(withdrawal_csv)
     ct_arr = mlab.csv2rec(consumption_csv)
     
     ids = ba[:,0]
     
     mean_ba = np.mean(ba[:,1:],1)
     ut = gen_merge.arrange_vector_by_ids(ut_arr["ut"],ut_arr["basinid"],ids).astype(np.double)
     uc = gen_merge.arrange_vector_by_ids(ct_arr["ct"],ct_arr["basinid"],ids).astype(np.double)
     area = gen_merge.arrange_vector_by_ids(area_arr["f_area"],area_arr["basinid"],ids).astype(np.double)
     bws = ut/mean_ba
     
     miscmask = (ut/area<use_thresh)*(mean_ba/area<arid_thresh)
     #miscmask2 = (ut/area[:,1]<use_thresh)*(mean_ba/area[:,1]<arid_thresh)*(bws<.8)
     bws_s = self.score(bws)
     bws_s[miscmask] = MAXSCORE
     bws_cat = self.categorize(bws_s, miscmask)
     
     joinarray = np.rec.fromarrays((ba[:,0],mean_ba,ut,uc,bws,bws_s,bws_cat,area),names=(BASIN_ID_FIELD,"BA","WITHDRAWAL","CONSUMPTION",self.plot_field_name,"%s_s" % self.plot_field_name,"%s_cat" % self.plot_field_name,"AREAM3"))
     
     print "joining data"
     ap.CopyFeatures_management(basin_poly,output_file)
     ap.da.ExtendTable(output_file,BASIN_ID_FIELD,joinarray,BASIN_ID_FIELD)
开发者ID:fgassert,项目名称:aqueduct_atlas,代码行数:26,代码来源:gen_BWS.py


示例9: test_merge_formatted

 def test_merge_formatted(self):
     data1 = csv2rec('arch1.csv')
     data2 = csv2rec('arch2.csv')
     dl = [data1, data2]
     merged = merge_formatted(dl)
     self.assertTrue(sum(merged['rew']) == 2)
     self.assertTrue(sum(merged['column']) == 12)
开发者ID:ethanwhite,项目名称:macroeco,代码行数:7,代码来源:test_form_func.py


示例10: rewrite_spec

def rewrite_spec(subj, run, root = "/home/jtaylo/FIAC-HBM2009"):
    """
    Take a FIAC specification file and get two specifications
    (experiment, begin).

    This creates two new .csv files, one for the experimental
    conditions, the other for the "initial" confounding trials that
    are to be modelled out. 

    For the block design, the "initial" trials are the first
    trials of each block. For the event designs, the 
    "initial" trials are made up of just the first trial.

    """

    if exists(pjoin("%(root)s", "fiac%(subj)d", "subj%(subj)d_evt_fonc%(run)d.txt") % {'root':root, 'subj':subj, 'run':run}):
        designtype = 'evt'
    else:
        designtype = 'bloc'

    # Fix the format of the specification so it is
    # more in the form of a 2-way ANOVA

    eventdict = {1:'SSt_SSp', 2:'SSt_DSp', 3:'DSt_SSp', 4:'DSt_DSp'}
    s = StringIO()
    w = csv.writer(s)
    w.writerow(['time', 'sentence', 'speaker'])

    specfile = pjoin("%(root)s", "fiac%(subj)d", "subj%(subj)d_%(design)s_fonc%(run)d.txt") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
    d = np.loadtxt(specfile)
    for row in d:
        w.writerow([row[0]] + eventdict[row[1]].split('_'))
    s.seek(0)
    d = csv2rec(s)

    # Now, take care of the 'begin' event
    # This is due to the FIAC design

    if designtype == 'evt':
        b = np.array([(d[0]['time'], 1)], np.dtype([('time', np.float),
                                                    ('initial', np.int)]))
        d = d[1:]
    else:
        k = np.equal(np.arange(d.shape[0]) % 6, 0)
        b = np.array([(tt, 1) for tt in d[k]['time']], np.dtype([('time', np.float),
                                                                 ('initial', np.int)]))
        d = d[~k]

    designtype = {'bloc':'block', 'evt':'event'}[designtype]

    fname = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "experiment_%(run)02d.csv") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
    rec2csv(d, fname)
    experiment = csv2rec(fname)

    fname = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "initial_%(run)02d.csv") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
    rec2csv(b, fname)
    initial = csv2rec(fname)

    return d, b
开发者ID:GaelVaroquaux,项目名称:nipy,代码行数:59,代码来源:fiac_util.py


示例11: append_rec

def append_rec(recs):
    base = mlab.csv2rec(recs[0]["file"])

    for nw in recs[1:]:
        append = mlab.csv2rec(nw["file"])
        for k,v in append.dtype.fields.iteritems():
            base = mlab.recs_join("sys_tick",k,[base,append],missing=0)
    return base
开发者ID:archaelus,项目名称:emetric,代码行数:8,代码来源:merge.py


示例12: test_format_dense

 def test_format_dense(self):
     data1 = csv2rec('arch1.csv')
     data2 = csv2rec('arch2.csv')
     dl = [data1, data2]
     form = format_dense(dl, 3, (4,4))
     self.assertTrue(np.all(form[0]['count'][:4] == np.array([1,1,3,3])))
     self.assertTrue(np.all(form[1]['count'] ==
                                            np.array([1,1,3,3,1,1,5,1])))
开发者ID:ethanwhite,项目名称:macroeco,代码行数:8,代码来源:test_form_func.py


示例13: test_add_data_fields

 def test_add_data_fields(self):
     data1 = csv2rec('arch1.csv')
     data2 = csv2rec('arch2.csv')
     dl = [data1, data2]
     alt_data = add_data_fields(dl, {'year': (1998, 2002)})
     self.assertTrue(np.all(alt_data[0]['year'] == '1998'))
     self.assertTrue(np.all(alt_data[1]['year'] == '2002'))
     alt_data = add_data_fields(dl, {'year' : (1998, 2002), 'why': ('h',
                                 'a')})
     self.assertTrue(np.all(alt_data[0]['why'] == 'h'))
开发者ID:ethanwhite,项目名称:macroeco,代码行数:10,代码来源:test_form_func.py


示例14: plotGraphs

def plotGraphs():
  global gDateStr, gTimeStr
  
  print "Plotting..." 
  print "temperatures"
  filename = "./data/" + gDateStr + "_temperatures.csv";
  r = mlab.csv2rec(filename, delimiter=',')

  fig = Figure(figsize=(6,6))
  canvas = FigureCanvas(fig)

  ax = fig.add_subplot(111)
  ax.set_title('Temperatures '+gDateStr,fontsize=14)

  ax.set_xlabel('Time',fontsize=6)
  ax.set_ylabel('Temperature (C)',fontsize=6)

  ax.grid(True,linestyle='-',color='0.75')

  # run two sanitize passes over the data
  r[r.dtype.names[1]] = arrayops.sanitize( r[r.dtype.names[1]] )
  r[r.dtype.names[2]] = arrayops.sanitize( r[r.dtype.names[2]] )


  # Generate the plot.
  ax.plot(r[r.dtype.names[0]],r[r.dtype.names[1]],color='tomato');
  ax.plot(r[r.dtype.names[0]],r[r.dtype.names[2]],color='green');

  # plot pump on times
  print "pump on"
  filename = "./data/" + gDateStr + "_pumpON.csv";
  if os.path.exists(filename):
    r = mlab.csv2rec(filename, delimiter=',')
    ax.scatter(r[r.dtype.names[0]],r[r.dtype.names[1]],color='orange');

  # plot pump off times
  print "pump off"
  filename = "./data/" + gDateStr + "_pumpOFF.csv";
  if os.path.exists(filename):
    r = mlab.csv2rec(filename, delimiter=',')
    ax.scatter(r[r.dtype.names[0]],r[r.dtype.names[1]],color='blue');


  for tick in ax.xaxis.get_major_ticks():
	  tick.label.set_fontsize(6)

  for tick in ax.yaxis.get_major_ticks():
	  tick.label.set_fontsize(6)

  ax.set_ylim(-5, 35)

  # Save the generated Plot to a PNG file.
  filename = "/var/www/Prometheus/data/"+gDateStr+"_temperatures.png"
  canvas.print_figure(filename,dpi=100)
  os.system('ln -sf '+filename+' /var/www/Prometheus/data/current_temperatures.png')
开发者ID:opiesche,项目名称:Prometheus,代码行数:55,代码来源:prometheus_controller.py


示例15: main

def main():
    inputlist = ["bin/global_BWS_20121015.csv","bin/global_WRI_20121015.csv"]
    lhs = mlab.csv2rec("bin/global_GU_20121015.csv")
    rhslist = []
    for x in inputlist:
        rhslist.append(mlab.csv2rec(x))
    
    rhslist[0]["basinid"] = rhslist[0]["basinid"].astype(np.long)
    keys = ("basinid","countryid","id")
    lhs = join_recs_on_keys(lhs,rhslist,keys)
    mlab.rec2csv(lhs,"bin/test.csv")
    print "complete"
开发者ID:fgassert,项目名称:aqueduct_atlas,代码行数:12,代码来源:gen_merge.py


示例16: test_event_design

def test_event_design():
    block = csv2rec(StringIO(altdescr["block"]))
    event = csv2rec(StringIO(altdescr["event"]))
    t = np.arange(191) * 2.5 + 1.25

    bkeep = np.not_equal((np.arange(block.time.shape[0])) % 6, 0)
    ekeep = np.greater(np.arange(event.time.shape[0]), 0)

    # Even though there is a FIAC block experiment
    # the design is represented as an event design
    # with the same event repeated several times in a row...

    Xblock, cblock = design.event_design(block[bkeep], t, hrfs=delay.spectral)
    Xevent, cevent = design.event_design(event[ekeep], t, hrfs=delay.spectral)
开发者ID:fperez,项目名称:nipy,代码行数:14,代码来源:test_FIAC.py


示例17: test_sanity

def test_sanity():
    from nipy.modalities.fmri import design, hrf
    import nipy.modalities.fmri.fmristat.hrf as fshrf
    from nipy.modalities.fmri.fmristat.tests import FIACdesigns
    from nipy.modalities.fmri.fmristat.tests.test_FIAC import matchcol
    from nipy.algorithms.statistics import formula
    from nose.tools import assert_true

    """
    Single subject fitting of FIAC model
    """

    # Based on file
    # subj3_evt_fonc1.txt
    # subj3_bloc_fonc3.txt

    for subj, run, design_type in [(3, 1, 'event'), (3, 3, 'block')]:
        nvol = 191
        TR = 2.5
        Tstart = 1.25

        volume_times = np.arange(nvol)*TR + Tstart
        volume_times_rec = formula.make_recarray(volume_times, 't')

        path_dict = {'subj':subj, 'run':run}
        if exists(pjoin(DATADIR, "fiac_%(subj)02d",
                        "block", "initial_%(run)02d.csv") % path_dict):
            path_dict['design'] = 'block'
        else:
            path_dict['design'] = 'event'

        experiment = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "experiment_%(run)02d.csv")
                             % path_dict)
        initial = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "initial_%(run)02d.csv")
                                % path_dict)

        X_exper, cons_exper = design.event_design(experiment,
                                                  volume_times_rec,
                                                  hrfs=fshrf.spectral)
        X_initial, _ = design.event_design(initial,
                                           volume_times_rec,
                                           hrfs=[hrf.glover])
        X, cons = design.stack_designs((X_exper, cons_exper), (X_initial, {}))

        # Get original fmristat design
        Xf = FIACdesigns.fmristat[design_type]
        # Check our new design can be closely matched to the original
        for i in range(X.shape[1]):
            # Columns can be very well correlated negatively or positively
            assert_true(abs(matchcol(X[:,i], Xf)[1]) > 0.999)
开发者ID:GaelVaroquaux,项目名称:nipy,代码行数:50,代码来源:fiac_util.py


示例18: replace_vals

def replace_vals(filename, replace, delim=','):
    '''
    Replace the values in filename with specified values in replace_values
    
    Parameters
    ----------
    filename : string 
        Will be read into a rec array

    replace_values : tuple
        First object is value to replace and second object is what to replace
        it with

    
    '''
    data = csv2rec(filename, delimiter=delim, missing=replace[0])
    for nm in data.dtype.names:
        try:
            # Missing float
            isNaN = (np.isnan(data[nm]))
        except:
            isNaN = np.zeros(len(data[nm]), dtype=bool)
        isBlank = np.array([it == '' for it in data[nm]])
        isMinusOne = (data[nm] == -1)# Missing int
        # Missing other
        isNone = np.array([i == None for i in data[nm]])
        ind = np.bitwise_or(isNaN, isBlank)
        ind = np.bitwise_or(ind, isMinusOne)
        ind = np.bitwise_or(ind, isNone)
        data[nm][ind] = replace[1]
    return data
开发者ID:gavinsimpson,项目名称:macroeco,代码行数:31,代码来源:format_data.py


示例19: shift

    def shift(self):
        """
        Print the expected gain/loss of each party.
        """
        nincum = np.zeros(3) #dem,gop,ind
        nnew = np.zeros(3) #dem,gop,ind

        rec = mlab.csv2rec('senate_polls.csv')
        states = np.unique(rec.state)
        
        for state in states:
            data = self.polldat(state)
            data = data[0,1:4]
            candidates = self.candidates(state)
            iincum =  (np.where(self.partyarr == candidates[3]))[0][0]
            ileader = np.argmax(data)

            nnew[ileader]  = nnew[ileader] +1 
            nincum[iincum] = nincum[iincum] + 1
            

        shift = nnew - nincum

        print 'Expected Shift in Senate Party Balance'
        print self.partyarr
        print shift
开发者ID:eptune,项目名称:Homework,代码行数:26,代码来源:poll.py


示例20: open_dense_data

def open_dense_data(filenames, direct, delim=','):
    '''
    This function takes in a list of dense data file names, opens
    them and returns them as list of rec arrays.

    Parameters
    ----------

    filenames : list 
        A list of filenames

    direct : string
        The directory within data/archival/ where the files are.
        Example 'ANBO_2010' or 'LBRI'

    delim : string
        The default file delimiter is ','

    Returns
    -------
    : list
        A list of rec arrays

    '''
    assert direct.find('/') == -1, "%s should not contain a '/'" % (direct)
    filedir = jp(pd(pd(gcwd())), 'archival', direct)
    datayears = []
    for name in filenames:
        data = plt.csv2rec(jp(filedir, name), delimiter=delim)
        datayears.append(data)
    return datayears
开发者ID:ethanwhite,项目名称:macroeco,代码行数:31,代码来源:form_func.py



注:本文中的matplotlib.mlab.csv2rec函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mlab.find函数代码示例发布时间:2022-05-27
下一篇:
Python mlab.bivariate_normal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap