本文整理汇总了Python中matplotlib.figure函数的典型用法代码示例。如果您正苦于以下问题:Python figure函数的具体用法?Python figure怎么用?Python figure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figure函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test
def test():
figure(figsize=(6,12))
t = linspace(0, 1, 1001)
y = sin(2*pi*t*6) + sin(2*pi*t*10) + sin(2*pi*t*13)
subplot(311)
plot(t, y, 'b-')
xlabel("TIME (sec)")
ylabel("SIGNAL MAGNITUDE")
# compute FFT and plot the magnitude spectrum
F = fft(y)
N = len(t) # number of samples
dt = 0.001 # inter-sample time difference
w = fftfreq(N, dt) # gives us a list of frequencies for the FFT
ipos = where(w>0)
freqs = w[ipos] # only look at positive frequencies
mags = abs(F[ipos]) # magnitude spectrum
subplot(312)
plot(freqs, mags, 'b-')
ylabel("POWER")
subplot(313)
plot(freqs, mags, 'b-')
xlim([0, 50]) # replot but zoom in on freqs 0-50 Hz
ylabel("POWER")
xlabel("FREQUENCY (Hz)")
savefig("signal_3freqs.jpg", dpi=150)
开发者ID:patrickcusack,项目名称:BWF,代码行数:25,代码来源:freqTest.py
示例2: test_radar_view
def test_radar_view():
lats=linspace(-13.0, -11.5, 40)
lons=linspace(130., 132., 40)
ber_loc=[-12.4, 130.85] #location of Berrimah radar
gp_loc=[-12.2492, 131.0444]#location of CPOL at Gunn Point
h=2.5*1000.0
t0=systime()
i_a, j_a, k_a=propigation.unit_vector_grid(lats, lons, h, gp_loc)
print "unit_vector_compute took ", systime()-t0, " seconds"
fw=0.1#degrees
m_bump=5.0
#b1=simul_winds.speed_bump(lats, lons, [-12.0, 131.0], fw)*m_bump
#b2=-1.0*simul_winds.speed_bump(lats, lons, [-12.0, 131.1], fw)*m_bump
u,v=simul_winds.unif_wind(lats, lons, 5.0, 75.0)
up,vp=array(simul_winds.vortex(lats, lons, [-12.5, 131.1], fw))*m_bump
#up=u+(b1-b2)
#vp=v-(b1-b2)
w=v*0.0
v_r=i_a*(up+u)+j_a*(vp+v)+k_a*w
f=figure()
mapobj=pres.generate_darwin_plot()
pres.contour_vr(mapobj,lats, lons, v_r)
savefig(os.getenv('HOME')+'/bom_mds/output/test_radar_view_gp.png')
close(f)
f=figure()
mapobj=pres.generate_darwin_plot()
pres.quiver_contour_winds(mapobj, lats, lons, (up+u),(vp+v))
savefig(os.getenv('HOME')+'/bom_mds/output/test_pert2.png')
close(f)
开发者ID:scollis,项目名称:bom_mds,代码行数:29,代码来源:bom_winds.py
示例3: show_dct_fig
def show_dct_fig():
figure(figsize=(12,7))
for u in range(8):
subplot(2, 4, u+1)
ylim((-1, 1))
title(str(u))
plot(arange(0,8,0.1), dct0[u, :])
plot(dct[u, :],'ro')
开发者ID:tjwei,项目名称:math-can-see-dimensions,代码行数:8,代码来源:local_utils.py
示例4: test_gracon
def test_gracon():
#setup
noise_level=0.0#m/s
nx=40
ny=40
fw=0.1
m_bump=10.00
t0=systime()
lats=linspace(-13.5, -12.0, 40)
lons=linspace(130.5, 131.5, 40)
ber_loc=[-12.4, 130.85] #location of Berrimah radar
gp_loc=[-12.2492, 131.0444]#location of CPOL at Gunn Point
h=2.5*1000.0
print 'calculating berimah UV', systime()-t0
i_ber, j_ber, k_ber=propigation.unit_vector_grid(lats, lons, h, ber_loc)
print 'calculating gp UV', systime()-t0
i_gp, j_gp, k_gp=propigation.unit_vector_grid(lats, lons, h, gp_loc)
#make winds
u,v=simul_winds.unif_wind(lats, lons, 10.0, 75.0)
up,vp=array(simul_winds.vortex(lats, lons, [-12.5, 131.1], fw))*m_bump
#make V_r measurements
vr_ber=i_ber*(up+u)+j_ber*(vp+v) + (random.random([nx,ny])-0.5)*(noise_level*2.0)
vr_gp=i_gp*(up+u)+j_gp*(vp+v)+ (random.random([nx,ny])-0.5)*(noise_level*2.0)
#try to reconstruct the wind field
igu, igv= simul_winds.unif_wind(lats, lons, 0.0, 90.0)
gv_u=zeros(u.shape)
gv_v=zeros(v.shape)
f=0.0
print igu.mean()
angs=array(propigation.make_lobe_grid(ber_loc, gp_loc, lats,lons))
wts=zeros(angs.shape, dtype=float)+1.0
#for i in range(angs.shape[0]):
# for j in range(angs.shape[1]):
# if (angs[i,j] < 150.0) and (angs[i,j] > 30.0): wts[i,j]=1.0
print 'Into fortran'
gv_u,gv_v,f,u_array,v_array = gracon_vel2d.gracon_vel2d(gv_u,gv_v,f,igu,igv,i_ber,j_ber,i_gp,j_gp,vr_ber,vr_gp,wts, nx=nx,ny=ny)
print u_array.mean()
print f
bnds=[0.,20.]
f=figure()
mapobj=pres.generate_darwin_plot()
pres.quiver_contour_winds(mapobj, lats, lons, (up+u),(vp+v), bounds=bnds)
savefig(os.getenv('HOME')+'/bom_mds/output/orig_winds_clean.png')
close(f)
f=figure()
mapobj=pres.generate_darwin_plot()
pres.quiver_contour_winds(mapobj, lats, lons, (wts*u_array +0.001),(wts*v_array +0.001), bounds=bnds)
savefig(os.getenv('HOME')+'/bom_mds/output/recon_winds_clean.png')
close(f)
f=figure()
mapobj=pres.generate_darwin_plot()
pres.quiver_contour_winds(mapobj, lats, lons, (wts*u_array - (up+u)),(wts*v_array -(vp+v)))
savefig(os.getenv('HOME')+'/bom_mds/output/errors_clean.png')
close(f)
开发者ID:scollis,项目名称:bom_mds,代码行数:55,代码来源:bom_winds.py
示例5: plotSolutions
def plotSolutions(x,states=None): #Default func values is trivial
plt.figure(figsize=(11,8.5))
#get the exact values
f = open('exact_results.txt', 'r')
x_e = []
u_e = []
p_e = []
rho_e = []
e_e = []
for line in f:
if len(line.split())==1:
t = line.split()
else:
data = line.split()
x_e.append(float(data[0]))
u_e.append(float(data[1]))
p_e.append(float(data[2]))
rho_e.append(float(data[4]))
e_e.append(float(data[3]))
if states==None:
raise ValueError("Need to pass in states")
else:
u = []
p = []
rho = []
e = []
for i in states:
u.append(i.u)
p.append(i.p)
rho.append(i.rho)
e.append(i.e)
#get edge values
x_cent = [0.5*(x[i]+x[i+1]) for i in range(len(x)-1)]
if u != None:
plot2D(x_cent,u,"$u$",x_ex=x_e,y_ex=u_e)
if rho != None:
plot2D(x_cent,rho,r"$\rho$",x_ex=x_e,y_ex=rho_e)
if p != None:
plot2D(x_cent,p,r"$p$",x_ex=x_e,y_ex=p_e)
if e != None:
plot2D(x_cent,e,r"$e$",x_ex=x_e,y_ex=e_e)
plt.show(block=False) #show all plots generated to this point
raw_input("Press anything to continue...")
plot2D.fig_num=0
开发者ID:jhansel,项目名称:radhydro,代码行数:54,代码来源:muscl_hanc.py
示例6: generate_plot
def generate_plot(array, vmin, vmax, figNumber=1):
plt.figure(figNumber)
plt.subplot(2,3,i)
print i
plt.imshow(array, vmin = vmin, vmax= vmax, interpolation = None)
plt.xlabel('Sample')
plt.ylabel('Line')
plt.title(row[0])
cb = plt.colorbar(orientation='hor', spacing='prop',ticks = [vmin,vmax],format = '%.2f')
cb.set_label('Reflectance / cos({0:.2f})'.format(incAnglerad*180.0/math.pi))
plt.grid(True)
开发者ID:michaelaye,项目名称:pymars,代码行数:11,代码来源:ice_in_craters.py
示例7: plot_f_score
def plot_f_score(self, disag_filename):
plt.figure()
from nilmtk.metrics import f1_score
disag = DataSet(disag_filename)
disag_elec = disag.buildings[building].elec
f1 = f1_score(disag_elec, test_elec)
f1.index = disag_elec.get_labels(f1.index)
f1.plot(kind='barh')
plt.ylabel('appliance');
plt.xlabel('f-score');
plt.title(type(self.model).__name__);
开发者ID:pilillo,项目名称:nilmtk-greend-tests,代码行数:11,代码来源:main.py
示例8: compress_kmeans
def compress_kmeans(im, k=4):
height, width, depth = im.shape
data = im.reshape((height * width, depth))
labels, centers = kmeans(data, k, 1e-2)
rep = closest(data, centers)
data_compressed = centers[rep]
im_compressed = data_compressed.reshape((height, width, depth))
plt.figure()
plt.imshow(im_compressed)
plt.show()
开发者ID:JonasSejr,项目名称:MLAU,代码行数:12,代码来源:compress.py
示例9: plot
def plot(self, output):
plt.figure(figsize=output.fsize, dpi=output.dpi)
for ii in range(0, len(self.v)):
imsize = [self.t[0], self.t[-1], self.x[ii][-1], self.x[ii][0]]
lim = amax(absolute(self.v[ii])) / output.scale_sat
plt.imshow(self.v[ii], extent=imsize, vmin=-lim, vmax=lim, cmap=cm.gray, origin='upper', aspect='auto')
plt.title("%s-Velocity for Trace #%i" % (self.comp.upper(), ii))
plt.xlabel('Time (s)')
plt.ylabel('Offset (km)')
#plt.colorbar()
plt.savefig("Trace_%i_v%s.pdf" % (ii, self.comp))
plt.clf()
开发者ID:cssherman,项目名称:PyE3D,代码行数:12,代码来源:e3d_classes.py
示例10: plotCentroidFitDiagnostic
def plotCentroidFitDiagnostic(img, hdr, ccdMod, ccdOut, res, prfObj):
"""Some diagnostic plots showing the performance of fitPrfCentroid()
Inputs:
-------------
img
(np 2d array) Image of star to be fit. Image is in the
format img[row, col]. img should not contain Nans
hdr
(Fits header object) header associated with the TPF file the
image was drawn from
ccdMod, ccdOut
(int) CCD module and output of image. Needed to
create the correct PRF model
prfObj
An object of the class prf.KeplerPrf()
Returns:
-------------
**None**
Output:
----------
A three panel subplot is created
"""
mp.figure(1)
mp.clf()
mp.subplot(131)
plotTpf.plotCadence(img, hdr)
mp.colorbar()
mp.title("Input Image")
mp.subplot(132)
c,r = res.x[0], res.x[1]
bbox = getBoundingBoxForImage(img, hdr)
model = prfObj.getPrfForBbox(ccdMod, ccdOut, c, r, bbox)
model *= res.x[2]
plotTpf.plotCadence(model, hdr)
mp.colorbar()
mp.title("Best fit model")
mp.subplot(133)
diff = img-model
plotTpf.plotCadence(diff, hdr)
mp.colorbar()
mp.title("Residuals")
print "Performance %.3f" %(np.max(np.abs(diff))/np.max(img))
开发者ID:barentsen,项目名称:dave,代码行数:52,代码来源:centroid.py
示例11: plot_confusion_matrix
def plot_confusion_matrix(cm, labels, title='Confusion matrix', cmap=plt.cm.Blues, save=False):
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(labels))
plt.xticks(tick_marks, labels, rotation=45)
plt.yticks(tick_marks, labels)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
if save:
plt.savefig(save)
开发者ID:johnnyzithers,项目名称:sample-tagging,代码行数:14,代码来源:machine_learning.py
示例12: get_trajectories_for_DF
def get_trajectories_for_DF(DF):
GetXYS=ct.get_xys(DF)
xys_s=ct.get_xys_s(GetXYS['xys'],GetXYS['Nmin'])
plt.figure(figsize=(5, 5),frameon=False)
for m in list(range(9)):
plt.plot()
plt.subplot(3,3,m+1)
xys_s_x_n=xys_s[m]['X']-min(xys_s[m]['X'])
xys_s_y_n=xys_s[m]['Y']-min(xys_s[m]['Y'])
plt.plot(xys_s_x_n,xys_s_y_n)
plt.axis('off')
axes = plt.gca()
axes.set_ylim([0,125])
axes.set_xlim([0,125])
开发者ID:bmdaort,项目名称:3D_CellTracking_Analysis,代码行数:14,代码来源:use_tracking_functions.py
示例13: get_trajectories_singleAxis_for_DF
def get_trajectories_singleAxis_for_DF(DF):
from random import randint
sns.set_palette(sns.color_palette("Paired"))
fig = plt.figure(figsize=(5, 5),frameon=False)
ax=fig.add_subplot(1, 1, 1)
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
#ax.spines['left'].set_smart_bounds(True)
#ax.spines['bottom'].set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.set_ylim([-300,300])
ax.set_xlim([-300,300])
ticklab = ax.xaxis.get_ticklabels()[0]
ax.xaxis.set_label_coords(300, -40,transform=ticklab.get_transform())
ax.set_xlabel('x($\mu$m)',fontsize=14)
ticklab = ax.yaxis.get_ticklabels()[0]
ax.yaxis.set_label_coords(90, 280,transform=ticklab.get_transform())
ax.set_ylabel('y($\mu$m)',rotation=0,fontsize=14)
GetXYS=ct.get_xys(DF)
xys_s=ct.get_xys_s(GetXYS['xys'],GetXYS['Nmin'])
for n in list(range(12)):
m=randint(0,len(xys_s))-1
xys_s_x_n=xys_s[m]['X']-(xys_s[m]['X'][xys_s[m]['X'].index[0]])
xys_s_y_n=xys_s[m]['Y']-(xys_s[m]['Y'][xys_s[m]['X'].index[0]])
xys_s_x_n=[x*(100/(60.)) for x in xys_s_x_n]
xys_s_y_n=[x*(100/(60.)) for x in xys_s_y_n]
ax.plot(xys_s_x_n,xys_s_y_n)
return fig
开发者ID:bmdaort,项目名称:3D_CellTracking_Analysis,代码行数:33,代码来源:use_tracking_functions.py
示例14: plotRetinaSpikes
def plotRetinaSpikes(retina=None, label=""):
assert retina is not None, "Network is not initialised! Visualising failed."
import matplotlib.pyplot as plt
from matplotlib import animation
print "Visualising {0} Spikes...".format(label)
spikes = [x.getSpikes() for x in retina]
# print spikes
sortedSpikes = sortSpikes(spikes)
# print sortedSpikes
framesOfSpikes = generateFrames(sortedSpikes)
# print framesOfSpikes
x = range(0, dimensionRetinaX)
y = range(0, dimensionRetinaY)
from numpy import meshgrid
rows, pixels = meshgrid(x,y)
fig = plt.figure()
initialData = createInitialisingData()
imNet = plt.imshow(initialData, cmap='green', interpolation='none', origin='upper')
plt.xticks(range(0, dimensionRetinaX))
plt.yticks(range(0, dimensionRetinaY))
args = (framesOfSpikes, imNet)
anim = animation.FuncAnimation(fig, animate, fargs=args, frames=int(simulationTime)*10, interval=30)
plt.show()
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:34,代码来源:NetworkVisualiser.py
示例15: plotColorCodedNetworkSpikes
def plotColorCodedNetworkSpikes(network):
assert network is not None, "Network is not initialised! Visualising failed."
import matplotlib as plt
from NetworkBuilder import sameDisparityInd
cellsOutSortedByDisp = []
spikes = []
for disp in range(0, maxDisparity+1):
cellsOutSortedByDisp.append([network[x][2] for x in sameDisparityInd[disp]])
spikes.append([x.getSpikes() for x in cellsOutSortedByDisp[disp]])
sortedSpikes = sortSpikesByColor(spikes)
print sortedSpikes
framesOfSpikes = generateColoredFrames(sortedSpikes)
print framesOfSpikes
fig = plt.figure()
initialData = createInitialisingDataColoredPlot()
imNet = plt.imshow(initialData[0], c=initialData[1], cmap=plt.cm.coolwarm, interpolation='none', origin='upper')
plt.xticks(range(0, dimensionRetinaX))
plt.yticks(range(0, dimensionRetinaY))
plt.title("Disparity Map {0}".format(disparity))
args = (framesOfSpikes, imNet)
anim = animation.FuncAnimation(fig, animate, fargs=args, frames=int(simulationTime)*10, interval=30)
plt.show()
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:29,代码来源:NetworkVisualiser.py
示例16: plot_images
def plot_images(header):
''' function to plot images from header.
It plots images, return nothing
Parameters
----------
header : databroker header object
header pulled out from central file system
'''
# prepare header
if type(list(headers)[1]) == str:
header_list = list()
header_list.append(headers)
else:
header_list = headers
for header in header_list:
uid = header.start.uid
img_field = _identify_image_field(header)
imgs = np.array(get_images(header, img_field))
print('Plotting your data now...')
for i in range(imgs.shape[0]):
img = imgs[i]
plot_title = '_'.join(uid, str(i))
# just display user uid and index of this image
try:
fig = plt.figure(plot_title)
plt.imshow(img)
plt.show()
except:
pass # allow matplotlib to crash without stopping other function
开发者ID:tacaswell,项目名称:xpdAcq,代码行数:31,代码来源:analysis.py
示例17: showScatterPlot
def showScatterPlot(data, labels, idx1, idx2):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
# X-axis data, Y-axis data, Size for each sample, Color for each sample
ax.scatter(data[:,idx1], data[:,idx2], 100.0*(1 + np.array(labels)), 100.0*(1 + np.array(labels)))
plt.show()
开发者ID:timjong93,项目名称:MachineLearning,代码行数:7,代码来源:learn.py
示例18: showScatterPlot
def showScatterPlot(data, idx1, idx2):
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
# X-axis data, Y-axis data, Size for each sample, Color for each sample
ax.scatter(data[:,idx1], data[:,idx2])
plt.show()
开发者ID:timjong93,项目名称:MachineLearning,代码行数:8,代码来源:learn.py
示例19: simple_reconstruction_3d_pytest
def simple_reconstruction_3d_pytest(tim, lvl_str, use_guess):
lvl=int(lvl_str)
ber, gp=netcdf_utis.load_cube('/bm/gdata/scollis/cube_data/20060122_'+tim+'_ver_hr_big.nc')
print gp['levs'][lvl]
Re=6371.0*1000.0
rad_at_radar=Re*sin(pi/2.0 -abs(gp['zero_loc'][0]*pi/180.0))#ax_radius(float(lat_cpol), units='degrees')
lons=gp['zero_loc'][1]+360.0*gp['xar']/(rad_at_radar*2.0*pi)
lats=gp['zero_loc'][0] + 360.0*gp['yar']/(Re*2.0*pi)
ber_loc=[-12.457, 130.925]
gp_loc= [-12.2492, 131.0444]
if use_guess=='none':
igu=ones(ber['CZ'].shape, dtype=float)*0.0
igv=ones(ber['CZ'].shape, dtype=float)*0.0
else:
ber_ig, gp_ig=netcdf_utis.load_cube(use_guess)
print gp_ig.keys()
igu=gp_ig['u_array']
igv=gp_ig['v_array']
mywts=ones(ber['CZ'].shape, dtype=float)
angs=array(propigation.make_lobe_grid(ber_loc, gp_loc, lats,lons))
wts_ang=zeros(gp['CZ'][:,:,0].shape, dtype=float)
for i in range(angs.shape[0]):
for j in range(angs.shape[1]):
if (angs[i,j] < 150.0) and (angs[i,j] > 30.0): wts_ang[i,j]=1.0
for lvl_num in range(len(gp['levs'])):
#create a weighting grid
mask_reflect=10.0#dBZ
mask=(gp['CZ'][:,:,lvl_num]/mask_reflect).round().clip(min=0., max=1.0)
mask_vel_ber=(ber['VR'][:,:,lvl_num]+100.).clip(min=0., max=1.)
mywts[:,:,lvl_num]=mask*mask_vel_ber*wts_ang
f=0.0
gv_u=zeros(ber['CZ'].shape, dtype=float)
gv_v=zeros(ber['CZ'].shape, dtype=float)
wts=mask*mask_vel_ber*wts_ang
gu,gv,f= grad_conj_solver_plus_plus.meas_cost(gv_u, gv_v, f, igu, igv, ber['i_comp'], ber['j_comp'], gp['i_comp'], gp['j_comp'], ber['VR'], gp['VR'], mywts)
print "Mean U gradient", gu.mean(), "gv mean", gv.mean(), "F ", f
for i in range(len(gp['levs'])):
print "U,V ", (igu[:,:,i]).sum()/mywts[:,:,i].sum(), (igv[:,:,i]).sum()/mywts[:,:,i].sum()
#gv_u,gv_v,cost = vel_2d_cost(gv_u,gv_v,cost,u_array,v_array,i_cmpt_r1,j_cmpt_r1,i_cmpt_r2,j_cmpt_r2,vr1,vr2,weights,nx=shape(gv_u,0),ny=shape(gv_u,1))
print gracon_vel2d.vel_2d_cost(gv_u[:,:,i]*0.0,gv_v[:,:,i]*0.0,0.0,igu[:,:,i],igv[:,:,i],ber['i_comp'][:,:,i], ber['j_comp'][:,:,i], gp['i_comp'][:,:,i], gp['j_comp'][:,:,i], ber['VR'][:,:,i], gp['VR'][:,:,i],mywts[:,:,i])[2]
gv_u,gv_v,f,u_array,v_array = grad_conj_solver_plus_plus.gracon_vel2d_3d( gv_u, gv_v, f, igu, igv, ber['i_comp'], ber['j_comp'], gp['i_comp'], gp['j_comp'], ber['VR'], gp['VR'], mywts)#, nx=nx, ny=ny, nz=nz)
gp.update({'u_array': u_array, 'v_array':v_array})
netcdf_utis.save_data_cube(ber, gp, '/bm/gdata/scollis/cube_data/20060122_'+tim+'_winds_ver1.nc', gp['zero_loc'])
plotit=True
if plotit:
for lvl in range(len(gp['levs'])):
print lvl
f=figure()
mapobj=pres.generate_darwin_plot(box=[130.8, 131.2, -12.4, -12.0])
diff=gp['VR']-(u_array*gp['i_comp']+ v_array*gp['j_comp'])
gp.update({'diff':diff})
pres.reconstruction_plot(mapobj, lats, lons, gp, lvl, 'diff',u_array[:,:,lvl],v_array[:,:,lvl], angs, mywts[:,:,lvl])
#pres.quiver_contour_winds(mapobj, lats, lons, (wts*u_array).clip(min=-50, max=50),(wts*v_array).clip(min=-50, max=50))
t1='Gunn Point CAPPI (dBZ) and reconstructed winds (m/s) at %(lev)05dm \n 22/01/06 ' %{'lev':gp['levs'][lvl]}
title(t1+tim)
ff=os.getenv('HOME')+'/bom_mds/output/recons_22012006/real_%(lev)05d_' %{'lev':gp['levs'][lvl]}
savefig(ff+tim+'_2d_3d.png')
close(f)
开发者ID:scollis,项目名称:bom_mds,代码行数:58,代码来源:bom_mds.py
示例20: test_uniform_winds
def test_uniform_winds():
f=figure()
lats=linspace(-13.0, -11.5, 20)
lons=linspace(130., 132., 20)
u,v=simul_winds.unif_wind(lats, lons, 10.0, 45.0)
mapobj=pres.generate_darwin_plot()
pres.quiver_winds(mapobj, lats, lons, u,v)
savefig(os.getenv('HOME')+'/bom_mds/output/test_uniform.png')
close(f)
开发者ID:scollis,项目名称:bom_mds,代码行数:9,代码来源:bom_winds.py
注:本文中的matplotlib.figure函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论