• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python math.tanh函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中math.tanh函数的典型用法代码示例。如果您正苦于以下问题:Python tanh函数的具体用法?Python tanh怎么用?Python tanh使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了tanh函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: feed_forward

    def feed_forward(self):
        """
        フィードフォワードアルゴリズム
        """
        # 入力はクエリの単語たち?(aiの初期化)
        for i in range(len(self.wordids)):
            self.ai[i] = 1.0

        # 隠れ層の発火
        for j in range(len(self.hiddenids)):
            sum = 0.0
            for i in range(len(self.wordids)):
                # リンクの強度を掛け合わせる
                # TODO : なぜaiを使うのか。1.0直値ではいけない理由が不明
                # sum = sum + self.ai[j] * self.wi[i][j]
                sum = sum + 1.0 * self.wi[i][j]
            # tanhを適用して最終的な出力を作り出す
            self.ah[j] = tanh(sum)

        # 出力層の発火
        for k in range(len(self.urlids)):
            sum = 0.0
            for j in range(len(self.hiddenids)):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = tanh(sum)

        return self.ao[:]
开发者ID:cy-shota-fukawa,项目名称:neural_network,代码行数:27,代码来源:nn.py


示例2: rho_harm

def rho_harm(x, xp, beta):
    # here upsilon_1 and upsilon_2 are just exponents
    Upsilon_1 = sum((x[d] + xp[d]) ** 2 / 4.0 * \
                    math.tanh(beta / 2.0) for d in range(3))
    Upsilon_2 = sum((x[d] - xp[d]) ** 2 / 4.0 / \
                    math.tanh(beta / 2.0) for d in range(3))
    return math.exp(- Upsilon_1 - Upsilon_2)
开发者ID:alexkcode,项目名称:StatMech,代码行数:7,代码来源:markov_harmonic_bosons.py


示例3: get_gm

 def get_gm(self, xxx_todo_changeme2, dev, debug=False):
     """Returns the source to output transconductance or d(I)/d(Vsn1-Vsn2)."""
     (vout, vin) = xxx_todo_changeme2
     self._update_status(vin, dev)
     gm = self.A * self.SLOPE * (math.tanh(self.SLOPE * (self.V - vin)) ** 2 - 1) / (
         self.A * math.tanh(self.SLOPE * (self.V - vin)) - self.B) ** 2
     return gm + options.gmin
开发者ID:B-Rich,项目名称:ahkab,代码行数:7,代码来源:switch.py


示例4: levy_harmonic_path

def levy_harmonic_path(k):
    x = [random.gauss(0.0, 1.0 / math.sqrt(2.0 * math.tanh(k * beta / 2.0)))]
    if k == 2:
        Ups1 = 2.0 / math.tanh(beta)
        Ups2 = 2.0 * x[0] / math.sinh(beta)
        x.append(random.gauss(Ups2 / Ups1, 1.0 / math.sqrt(Ups1)))
    return x[:]
开发者ID:borundev,项目名称:KrauthCourse,代码行数:7,代码来源:A1.py


示例5: compute

    def compute(self, plug, data):

        #   Check if output value is connected
        if plug == self.aOutputVaue:

            #    Get input datas
            operationTypeHandle = data.inputValue(self.aOperationType)
            operationType = operationTypeHandle.asInt()

            inputValueXHandle = data.inputValue(self.aInputValueX)
            inputValueX = inputValueXHandle.asFloat()

            inputValueYHandle = data.inputValue(self.aInputValueY)
            inputValueY = inputValueYHandle.asFloat()
            
            #   Math tanus
            outputValue = 0
            if operationType == 0:
                outputValue = math.atan(inputValueX)
            if operationType == 1:
                outputValue = math.tan(inputValueX)
            if operationType == 2:
                outputValue = math.atanh(inputValueX)
            if operationType == 3:
                outputValue = math.tanh(inputValueX)
            if operationType == 4:
                outputValue = math.tanh(inputValueY, inputValueX)

            #   Output Value
            output_data = data.outputValue(self.aOutputVaue)
            output_data.setFloat(outputValue)

        #   Clean plug
        data.setClean(plug)
开发者ID:AtonLerin,项目名称:Maya_Tools,代码行数:34,代码来源:QDTan.py


示例6: testHyperbolic

 def testHyperbolic(self):
     self.assertEqual(math.sinh(5), hyperbolic.sineh_op(5))
     self.assertEqual(math.cosh(5), hyperbolic.cosineh_op(5))
     self.assertEqual(math.tanh(5), hyperbolic.tangenth_op(5))
     self.assertEqual(1. / math.sinh(5), hyperbolic.cosecanth_op(5))
     self.assertEqual(1. / math.cosh(5), hyperbolic.secanth_op(5))
     self.assertEqual(1. / math.tanh(5), hyperbolic.cotangenth_op(5))
开发者ID:Eleanor320,项目名称:pygep,代码行数:7,代码来源:mathematical.py


示例7: set_eta1eta2

    def set_eta1eta2(self, eta1, eta2):
        eta=sqrt(eta1**2 + eta2**2)

        if eta==0.:
            self.e1,self.e2,self.g1,self.g2=(0.,0.,0.,0.)
            return

        etot=tanh(eta)
        gtot=tanh(eta/2.)

        if etot >= 1.0:
            mess="e values must be < 1, found %.16g" % etot
            raise ShapeRangeError(mess)
        if gtot >= 1.0:
            mess="g values must be < 1, found %.16g" % gtot
            raise ShapeRangeError(mess)

        cos2theta = eta1/eta
        sin2theta = eta2/eta

        e1=etot*cos2theta
        e2=etot*sin2theta

        g1=gtot*cos2theta
        g2=gtot*sin2theta

        self.eta1,self.eta2=eta1,eta2
        self.e1,self.e2=e1,e2
        self.g1,self.g2=g1,g2
开发者ID:esheldon,项目名称:espy,代码行数:29,代码来源:shear.py


示例8: feedforward

	def feedforward(self):
		""" the feedforward algorithm. This takes a list of inputs,
		pushes them through the network, and returns the output of all the nodes in the out
		put layer. In this case, since youve only constructed a network with words in the
		query, the output from all the input nodes will always be 1:
		"""
		# The only inputs are the query words
		for i in range(len(self.wordids)):
			self.ai[i] = 1.0

		# Hidden activations
		for j in range(len(self.hiddenids)):
			sum = 0.0
			for i in range(len(self.wordids)):
				sum =sum + self.ai[i] * self.wi[i][j]
			self.ah[j] = tanh(sum)

		# output activations
		for k in range(len(self.urlids)):
			sum = 0.0
			for j in range(len(self.hiddenids)):
				sum = sum + self.ah[j] * self.wo[j][k]
			self.ao[k] = tanh(sum)

		return self.ao[:]  # Return a copy of self.ao 
开发者ID:vencejo,项目名称:ActualCollectiveIntelligence,代码行数:25,代码来源:nn.py


示例9: rho_harm

def rho_harm(x, xp, beta):
    ''' Gives a diagonal harmonic density matrix, exchanging 2 particles '''
    Upsilon_1 = sum((x[d] + xp[d]) ** 2 / 4.0 *
                    math.tanh(beta / 2.0) for d in range(3))
    Upsilon_2 = sum((x[d] - xp[d]) ** 2 / 4.0 /
                    math.tanh(beta / 2.0) for d in range(3))
    return math.exp(- Upsilon_1 - Upsilon_2)
开发者ID:M0nd4,项目名称:statistical-mechanics-ens,代码行数:7,代码来源:homework_w7_b2.py


示例10: tanh

def tanh(self, other=None):
# Return hyperbolic tangent of interval
	
 	if other != None:
  		intv = IReal(self, other)
 	else:
  		if type(self) == float or type(self) == str:
   			intv = IReal(self)
  		else:
   			intv = self
 
 	if math.tanh(intv.inf) > math.tanh(intv.sup):
		inf = max(intv.inf, intv.sup)
		sup = min(intv.inf, intv.sup)
	else:
		inf = intv.inf
		sup = intv.sup


 	ireal.rounding.set_mode(1)

 	ireal.rounding.set_mode(-1)
 	ireal.rounding.set_mode(-1)

 	new_inf = math.tanh(inf)
 	ireal.rounding.set_mode(1)
	new_sup = max(float(IReal('%.16f' % math.tanh(sup)).sup), float(IReal('%.19f' % math.tanh(sup)).sup))

 	return IReal(new_inf, new_sup)
开发者ID:filipevarjao,项目名称:IntPy,代码行数:29,代码来源:stdfunc.py


示例11: Evap

	def Evap(self, p0, p1, t1, tau, beta, duration):
		"""Evaporation ramp"""
		if duration <=0:
			return
		else:
			N=int(round(duration/self.ss))
			print '...Evap nsteps = ' + str(N)
			ramp=[]
			ramphash = 'L:/software/apparatus3/seq/ramps/' + 'Evap_' \
					   + hashlib.md5(str(self.ss)+str(duration)+str(p0)+str(p1)+str(t1)+str(tau)+str(beta)).hexdigest()
			if not os.path.exists(ramphash):
				print '...Making new Evap ramp'
				for xi in range(N):
					t = (xi+1)*self.ss
					if t < t1:
						phys =  (p0-p1)*math.tanh( beta/tau * (t-t1)* p1/(p0-p1))/math.tanh( beta/tau * (-t1) * p1/(p0-p1)) + p1
					else:
						phys =   p1 * math.pow(1,beta) / math.pow( 1 + (t-t1)/tau ,beta)
					volt = cnv(self.name,phys)
					ramp = numpy.append( ramp, [ volt])
				ramp.tofile(ramphash,sep=',',format="%.4f")
			else:
				print '...Recycling previously calculated Evap ramp'
				ramp = numpy.fromfile(ramphash,sep=',')

			self.y=numpy.append(self.y,ramp)
			
		return
开发者ID:PedroMDuarte,项目名称:apparatus3-seq,代码行数:28,代码来源:wfm_.py


示例12: skill_variation

 def skill_variation(self, K, V):
     """calcola la variazione di skill dei players K e V in seguito alla kill"""
     if self.PT[V].team == 3:
         return  # A volte viene killato qualcuno che risulta spect
     D = self.PT[K].skill - self.PT[V].skill  # Delta skill tra i due player
     Dk = self.PT[K].skill - self.TeamSkill[(self.PT[V].team - 1)]  # Delta skill Killer rispetto al team avversario
     Dv = self.TeamSkill[(self.PT[K].team - 1)] - self.PT[V].skill  # Delta skill Vittima rispetto al team avversario
     K_opponent_variation = (
         1 - math.tanh(D / self.Sk_range)
     ) / self.Sk_Kpp  # Variazione skill del Killer in base a skill vittima
     V_opponent_variation = (
         2 / self.Sk_Kpp - K_opponent_variation
     )  # Variazione skill della Vittima in base a skill killer
     KT_variation = (
         1 - math.tanh(Dk / self.Sk_range)
     ) / self.Sk_Kpp  # Variazione skill del Killer in base a skill team vittima
     VT_variation = (
         -(1 - math.tanh(Dv / self.Sk_range)) / self.Sk_Kpp
     )  # Variazione skill della Vittima in base a skill team killer
     Dsk_K = self.Sbil * (
         self.Sk_team_impact * KT_variation + (1 - self.Sk_team_impact) * K_opponent_variation
     )  # delta skill del Killer
     Dsk_V = self.Sbil * (
         self.Sk_team_impact * VT_variation + (1 - self.Sk_team_impact) * V_opponent_variation
     )  # delta skill della vittima
     self.PT[K].skill += Dsk_K * self.PT[K].skill_coeff  # (nuova skill)
     self.PT[V].skill += Dsk_V * self.PT[V].skill_coeff  # (nuova skill)
     self.PT[K].skill_var += Dsk_K  # variazione skill per mappa
     self.PT[V].skill_var += Dsk_V  # variazione skill per mappa
     return
开发者ID:Satish-Lakhani,项目名称:redcap,代码行数:30,代码来源:C_GSRV.py


示例13: feedforward

    def feedforward(self):
        # the only inputs are the query words
        for i in range(len(self.wordids)):
            self.ai[i] = 1.0
            # hidden activations

        for j in range(len(self.hiddenids)):
            sum = 0.0

            for i in range(len(self.wordids)):

                sum = sum + self.ai[i] * self.wi[i][j]

            self.ah[j] = tanh(sum) * 10

            # output activations
        for k in range(len(self.urlids)):
            sum = 0.0

            for j in range(len(self.hiddenids)):

                sum = sum + self.ah[j] * self.wo[j][k]

            self.ao[k] = tanh(sum)

        return self.ao[:]
开发者ID:obengwilliam,项目名称:searchjob,代码行数:26,代码来源:neural_network.py


示例14: feed_forward

    def feed_forward(self):
        '''
        This returns the output of all the output nodes, with the inputs
        coming from the setup_network function.
        '''
        # first it sets the input word weights to 1.0
        for i in xrange(len(self.word_ids)):
            self.ai[i] = 1.0

        # then it iterates through all of the hidden nodes associated with
        # the words and urls (query and results) and uses a sigmoid to
        # accumulate the weights coming from the inputs (ai) and the
        # input weight matrix (wi) for each word-hidden_node relation.
        for j in xrange(len(self.hidden_ids)):
            sum = 0.0
            for i in xrange(len(self.word_ids)):
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = tanh(sum)

        # finally it iterates through all of the output nodes (urls)
        # and uses a sigmoid function to accumulate the weights
        # coming from the hidden nodes (ah) updated in the
        # previous step and the output weights (wo) for each
        # hidden_node-url relation.
        for k in xrange(len(self.url_ids)):
            sum = 0.0
            for j in xrange(len(self.hidden_ids)):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = tanh(sum)

        return self.ao[:]
开发者ID:nholtappels,项目名称:collective_intelligence_examples,代码行数:31,代码来源:nn.py


示例15: we_context_mod

def we_context_mod(w, v, words,phrases,rep):
    w = deepcopy(w)
    v = deepcopy(v)
    for repet in range(rep):
        for o in range(len(words)):
            print o, ' of ', len(words)
            # h = np.zeros(prof)
            # for pal in phrases[c].split():
            #     h += v[words.index(pal)]
            # div = 0.0
            # for aux in w:
            #     div += math.exp(-1 * math.tanh(np.dot(aux, h)))
            for c in range(len(phrases)):
                ##
                h = np.zeros(prof)
                for pal in phrases[c].split():
                    h += v[words.index(pal)]
                div = 0.0
                for aux in w:
                    div += math.exp(-1 * math.tanh(np.dot(aux, h)))
                ##

                poc = math.exp(-1 * math.tanh(np.dot(w[o],h))) / div
                err = 0.0
                if words[o] in phrases[c]:
                    err = 1 - poc
                else:
                    err = 0 - poc

                v[o] = v[o] - (eta * err * h)

            for word in phrases[c].split():
                w[words.index(word)] -=  (eta * sum(v) / len(phrases[c].split()))

    return {'w': w, 'v':v}
开发者ID:jaradricc,项目名称:Metodos-analiticos-para-texto-Tarea5,代码行数:35,代码来源:word_embeddings.py


示例16: _zoom_animation

 def _zoom_animation(self):
     import time
     from math import tanh
     scale = 5
     for i1 in range(-scale, scale+1):
         self.replot(zlfrac=0.5 + 0.5*tanh(i1*2.0/scale)/tanh(2.0))
         self.c.update()
开发者ID:pigboysid,项目名称:myat,代码行数:7,代码来源:canvas.py


示例17: feedForward

    def feedForward(self):
        nIn = len(self.wordIds)
        nHidden = len(self.hiddenIds)
        nOut = len(self.urlIds)

        # the only inputs are the query words
        for i in range(nIn):
            self.wordOut[i] = 1.0

        # hidden activations
        for i in range(nHidden):
            sum = 0.0

            for j in range(nIn):
                sum += self.wordOut[j] * self.wordHidden[j][i]

            self.hiddenOut[i] = tanh(sum)

        # output activations
        for i in range(nOut):
            sum = 0.0

            for j in range(nHidden):
                sum += self.hiddenOut[j] * self.hiddenUrl[j][i]

            self.urlOut[i] = tanh(sum)

        return self.urlOut[:]
开发者ID:ArtanisCV,项目名称:Mercury,代码行数:28,代码来源:neuralNetwork.py


示例18: getallhiddenids

	def getallhiddenids(self,wordids,urlids):
		l1={}
		for wordid in wordids:
			cur=self.con.execute('select toid from wordhidden where from id=%d'% wordid)
			for  row in cur: l1[row[0]=1
		for urlid in urlids:
			cur=self.con.select('select fromid from hiddenurl where toid=%d'% urlid)
			for row in cur:l1[row[0]]=1
		return l1.keys()
	def setupnetwork(self,wordids,urlids):
		self.wordids=wordids
		self.hiddenids=self.getallhiddenids(wordids,urlids)
		self.urlids=self.urlids
		
		self.ai=[1.0]*len(self.wordids)
		self.ah=[1.0]*len(self.hiddenids)
		self.ao=[1.0]*len(self.urlids)
		
		self.wi=[[self.getstrength(wordid,hiddenid,0) for hiddenid in self.hiddenids] for wordid in self.wordids]
		self.wo=[[self.getstrenth(hiddenid,urlid,1) for urlid in self.urlids]for hiddenid in self.hiddenids]
	def feedforward(self):
		for i in range(len(self.wordids)):
			self.ai[i]=1
		
		for j in range(len(self.hiddenids)):
			sum=0.0
			for i in range(len(self.wordids)):
				sum=sum+self.ai[i]*self.wi[i][j]
			self.ah[j]=tanh(sum)
		for k in range(len(self.urlids)):
			sum=0.0
			for j in range(len(self.hiddenids)):
				sum=sum+self.ah[j]*self.wo[j][k]
			self.ao[k]=tanh(sum)
		return self.ao[:]
	def getresult(self,wordids,urlids):
		self.setupnetwork(wordids,urlids)
		return self.feedforward()
	def dtanh(y):
		return 1.0-y*y
	def backPropagete(self,targets,N=0.5):
		output_deltas=[0.0]*len(self.urlids)
		for k in range(len(self.urlids)):
			error=targets[k]-self.ao[k]
			output_deltas=dtanh(self.ao[k]])*error
		hidden_deltas=[0.0]*len(self.hiddenids)
		for j in range(len(self.hidddenids)):
			error=0.0
			for k in range(len(self.len(urlids))):
				error=error+output[k]*self.wo[j][k]
			hidden_deltas[j]=dtanh(self.ah[j])*error
		for j in range(len(self.hiddenids)):
			for k in range(len(self.urlids)):
				change = output_delta[k]*self.ah[j]
				self.wo[j][k]=self.wo[j][k]+N*change
		for i in range(len(self.wordids)):
			for j in range(len(self.hiddenids)):
				change=hidden_delta[j]*self.ai[i]
				self.wi[i][j]=self.wi[i][j]+N*change
开发者ID:tfka,项目名称:python_code,代码行数:59,代码来源:nn.py


示例19: score

def score(filename):
    """
    Score individual image files for the genetic algorithm.
    The idea is to derive predictive factors for the langmuir performance
    (i.e., max power) based on the connectivity, phase fractions, domain sizes,
    etc. The scoring function should be based on multivariate fits from a database
    of existing simulations. To ensure good results, use robust regression techniques
    and cross-validate the best-fit.

    :param filename: image file name
    :type filename: str

    :return score (ideally as an estimated maximum power in W/(m^2))
    :rtype float
    """
    # this works around a weird bug in scipy.misc.imread with 1-bit images
    # open them with PIL as 8-bit greyscale "L" and then convert to ndimage
    pil_img = Image.open(filename)
    image = misc.fromimage(pil_img.convert("L"))

    width, height = image.shape
    if width != 256 or height != 256:
        print "Size Error: ", filename

    #    isize = analyze.interface_size(image)
    ads1, std1 = analyze.average_domain_size(image)

    # we now need to invert the image to get the second domain size
    inverted = (image < image.mean())
    ads2, std2 = analyze.average_domain_size(inverted)

    #overall average domain size
    ads = (ads1 + ads2) / 2.0

    # transfer distances
    # connectivity
    td1, connect1, td2, connect2 = analyze.transfer_distance(image)

    spots = np.logical_xor(image,
        ndimage.binary_erosion(image, structure=np.ones((2,2))))
    erosion = np.count_nonzero(spots)

    spots = np.logical_xor(image,
        ndimage.binary_dilation(image, structure=np.ones((2,2))))
    dilation = np.count_nonzero(spots)

    # fraction of phase one
    nonzero = np.count_nonzero(image)
    fraction = float(nonzero) / float(image.size)
    # scores zero at 0, 1 and maximum at 0.5
    ps = fraction*(1.0-fraction)

    # from simulations with multivariate nonlinear regression
    return (-1.98566e8) + (-1650.14)/ads + (-680.92)*math.pow(ads,0.25) + \
           1.56236e7*math.tanh(14.5*(connect1 + 0.4)) + 1.82945e8*math.tanh(14.5*(connect2 + 0.4)) \
           + 2231.32*connect1*connect2 \
           + (-4.72813)*td1 + (-4.86025)*td2 \
           + 3.79109e7*ps**8 \
           + 0.0540293*dilation + 0.0700451*erosion
开发者ID:JoshuaSBrown,项目名称:langmuir,代码行数:59,代码来源:ga.py


示例20: distance_Sigmoid

def distance_Sigmoid(X,Y,a,r):
    d = np.dot(X,X)
    d = math.tanh(a * d + r)
    b = np.dot(Y,Y)
    b = math.tanh(a * b + r)
    c = np.dot(X,Y)
    c = math.tanh(a * c + r)
    return a + b - 2 * c
开发者ID:wangfengfighting,项目名称:GPS_Similar,代码行数:8,代码来源:sciencecluster.py



注:本文中的math.tanh函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python math.trunc函数代码示例发布时间:2022-05-27
下一篇:
Python math.tan函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap