本文整理汇总了Python中math.lgamma函数的典型用法代码示例。如果您正苦于以下问题:Python lgamma函数的具体用法?Python lgamma怎么用?Python lgamma使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了lgamma函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: compute_likelihood
def compute_likelihood(document, model, phi, var_gamma):
likelihood = 0
digsum = 0
var_gamma_sum = 0
dig = [0 for x in range(model.num_topics)]
for k in range(0, model.num_topics):
dig[k] = digamma(var_gamma[k])
var_gamma_sum = var_gamma[k] + var_gamma_sum
digsum = digamma(var_gamma_sum)
likelihood = math.lgamma(model.alpha * model.num_topics) \
- model.num_topics * math.lgamma(model.alpha) \
- (math.lgamma(var_gamma_sum))
for k in range(0, model.num_topics):
likelihood += ((model.alpha - 1) * (dig[k] - digsum)
+ math.lgamma(var_gamma[k]) - (var_gamma[k] - 1)
* (dig[k] - digsum))
for n in range(0, document.unique_word_count):
if phi[n][k] > 0:
likelihood += document.word_counts[n] * \
(phi[n][k] * ((dig[k] - digsum)
- math.log(phi[n][k])
+ model.log_prob_w[k][document.words[n]]))
return likelihood
开发者ID:schomper,项目名称:Thesis,代码行数:29,代码来源:util_functions.py
示例2: log_likelihood
def log_likelihood(self, full=False):
ll = (math.lgamma(self.alpha) - math.lgamma(self.alpha + self.total_customers)
+ sum(math.lgamma(c) for tables in self.tables.itervalues() for c in tables)
+ self.ntables * math.log(self.alpha))
if full:
ll += self.base.log_likelihood(full=True) + self.prior.log_likelihood()
return ll
开发者ID:pearsonhenry,项目名称:vpyp,代码行数:7,代码来源:pyp.py
示例3: LogCombinations
def LogCombinations(x,y):
u"""Calculates the logarithm of a binomial coefficient.
This avoids overflows. Implemented with gamma functions for efficiency"""
result=lgamma(x+1)
result-=lgamma(y+1)
result-=lgamma(x-y+1)
return result
开发者ID:PeteBleackley,项目名称:nltk,代码行数:7,代码来源:EntropyCalculator.py
示例4: log_likelihood
def log_likelihood(self, full=False):
ll = (math.lgamma(self.K * self.alpha) - math.lgamma(self.K * self.alpha + self.N)
+ sum(math.lgamma(self.alpha + self.count[k]) for k in xrange(self.K))
- self.K * math.lgamma(self.alpha))
if full:
ll += self.prior.log_likelihood()
return ll
开发者ID:Peratham,项目名称:vpyp,代码行数:7,代码来源:prob.py
示例5: UpdateKappaSigmaSq
def UpdateKappaSigmaSq(self,it):
for ii in xrange(self.T-1):
new_kappa_sigma_sq = self.kappa_sigma_sq[ii]+(2*np.ceil(2*np.random.random())-3)*(np.random.geometric(1.0/(1+np.exp(self.log_kappa_sigma_sqq[ii])))-1)
if new_kappa_sigma_sq <0:
accept = 0
else:
lam1 = 1.0*self.lambda_sigma + self.kappa_sigma_sq[ii]
gam1 = 1.0*self.lambda_sigma/self.mu_sigma + 1.0*self.rho_sigma/(1-self.rho_sigma)*self.lambda_sigma/self.mu_sigma
loglike = lam1*np.log(gam1)-math.lgamma(lam1)+(lam1-1)*np.log(self.sigma_sq[ii+1])
pnmean = self.sigma_sq[ii]*self.rho_sigma/(1-self.rho_sigma)*self.lambda_sigma/self.mu_sigma
loglike = loglike + self.kappa_sigma_sq[ii]*np.log(pnmean)- math.lgamma(1.0*self.kappa_sigma_sq[ii]+1)
lam1 = 1.0*self.lambda_sigma + new_kappa_sigma_sq
gam1 = 1.0*self.lambda_sigma/self.mu_sigma + self.rho_sigma/(1-self.rho_sigma)*self.lambda_sigma/self.mu_sigma
new_loglike = lam1*np.log(gam1)-math.lgamma(lam1)+(lam1-1)*np.log(self.sigma_sq[ii+1])
pnmean = self.sigma_sq[ii]*self.rho_sigma/(1-self.rho_sigma)*self.lambda_sigma/self.mu_sigma
new_loglike = new_loglike + new_kappa_sigma_sq*np.log(pnmean)-math.lgamma(1.0*new_kappa_sigma_sq+1)
log_accept = new_loglike - loglike
accept =1
if np.isnan(log_accept) or np.isinf(log_accept):
accept = 0
elif log_accept <0:
accept = np.exp(log_accept)
self.kappa_lambda_sigma_accept = self.kappa_lambda_sigma_accept + accept
self.kappa_sigma_sq_count = self.kappa_sigma_sq_count +1
if np.random.random()<accept :
self.kappa_sigma_sq[ii] = new_kappa_sigma_sq
self.log_kappa_sigma_sqq[ii] = self.log_kappa_sigma_sqq[ii]+1.0/it**0.55*(accept-0.3)
开发者ID:KaneFu,项目名称:ngar,代码行数:30,代码来源:ngar_5years.py
示例6: sample_document
def sample_document(self, m):
z = self.corpus[m]["state"] # Step1: カウントを減らす
if z > 0:
self.topic_document_freq[z] -= 1
self.topic_document_sum -= 1
for v in self.corpus[m]["bag_of_words"]:
self.topic_word_freq[z][v] -= 1
self.topic_word_sum[z] -= 1
n_d_v = defaultdict(float) # Step2: 事後分布の計算
n_d = 0.0
for v in self.corpus[m]["bag_of_words"]:
n_d_v[v] += 1.0
n_d += 1.0
p_z = defaultdict(lambda: 0.0)
for z in xrange(1, self.K + 1):
p_z[z] = math.log((self.topic_document_freq[z] + self.alpha) / (self.topic_document_sum + self.alpha*self.K))
p_z[z] += (math.lgamma(self.topic_word_sum[z] + self.beta*self.V) - math.lgamma(self.topic_word_sum[z] + n_d + self.beta*self.V))
for v in n_d_v.iterkeys():
p_z[z] += (math.lgamma(self.topic_word_freq[z][v] + n_d_v[v] + self.beta) - math.lgamma(self.topic_word_freq[z][v] + self.beta))
max_log = max(p_z.values()) # オーバーフロー対策
for z in p_z:
p_z[z] = math.exp(p_z[z] - max_log)
new_z = self.sample_one(p_z) # Step3: サンプル
self.corpus[m]["state"] = new_z # Step4: カウントを増やす
self.topic_document_freq[new_z] += 1
self.topic_document_sum += 1
for v in self.corpus[m]["bag_of_words"]:
self.topic_word_freq[new_z][v] += 1
self.topic_word_sum[new_z] += 1
开发者ID:kenchin110100,项目名称:topic_model,代码行数:29,代码来源:mixture_of_unigram_model.py
示例7: incomplete_gamma
def incomplete_gamma(x, s):
r"""
This function computes the incomplete lower gamma function
using the series expansion:
.. math::
\gamma(x, s) = x^s \Gamma(s)e^{-x}\sum^\infty_{k=0}
\frac{x^k}{\Gamma(s + k + 1)}
This series will converge strongly because the Gamma
function grows factorially.
Because the Gamma function does grow so quickly, we can
run into numerical stability issues. To solve this we carry
out as much math as possible in the log domain to reduce
numerical error. This function matches the results from
scipy to numerical precision.
"""
if x < 0:
return 1
if x > 1e3:
return math.gamma(s)
log_gamma_s = math.lgamma(s)
log_x = log(x)
value = 0
for k in range(100):
log_num = (k + s)*log_x + (-x) + log_gamma_s
log_denom = math.lgamma(k + s + 1)
value += math.exp(log_num - log_denom)
return value
开发者ID:jfinkels,项目名称:goftests,代码行数:31,代码来源:utils.py
示例8: calc_full
def calc_full(n, alphas):
""" Calculate the log likelihood under DirMult distribution with alphas=avec, given data counts of nvec."""
lg_sum_alphas = math.lgamma(alphas.sum())
sum_lg_alphas = np.sum(scipy.special.gammaln(alphas))
lg_sum_alphas_n = math.lgamma(alphas.sum() + n.sum())
sum_lg_alphas_n = np.sum(scipy.special.gammaln(n+alphas))
return lg_sum_alphas - sum_lg_alphas - lg_sum_alphas_n + sum_lg_alphas_n
开发者ID:garibaldu,项目名称:radioblobs,代码行数:7,代码来源:score_DirMult.py
示例9: tdens
def tdens(self, n, X):
C = (1.0 + (X * X) / (n * 1.0))
h = math.lgamma((n + 1.0) / 2.0) - math.lgamma(n / 2.0)
h = math.exp(h)
h = h / math.sqrt(math.pi) / math.sqrt(n)
Result = h * (C ** (-((n / 2.0) + (1.0 / 2.0))))
return Result
开发者ID:duhadler,项目名称:mpFormulaCPython,代码行数:7,代码来源:Distributions.py
示例10: incompleteBetaFunction
def incompleteBetaFunction(x,a,b):
lbeta = math.lgamma(a + b) - math.lgamma(a) - math.lgamma(b) \
+ a * math.log(x) + b * math.log(1.0 - x)
if (x < (a + 1)/(a + b + 2)):
return math.exp(lbeta) * contFractionBeta(a,b,x)/a
else:
return 1 - math.exp(lbeta) * contFractionBeta(b,a,1.-x)/b
开发者ID:bwengals,项目名称:hadrian,代码行数:7,代码来源:spec.py
示例11: log_likelihood
def log_likelihood(self, full=False):
ll = (math.lgamma(self.K * self.alpha) - math.lgamma(self.K * self.alpha + self.N)
+ sum(math.lgamma(self.alpha + self.count[k]) for k in self.count)
- len(self.count) * math.lgamma(self.alpha)) # zero counts
if full:
ll += self.prior.log_likelihood()
return ll
开发者ID:pearsonhenry,项目名称:vpyp,代码行数:7,代码来源:prob.py
示例12: UpdateKappa
def UpdateKappa(self, it):
for ii in xrange(self.T-1):
for jj in xrange(self.p):
new_kappa = self.kappa[ii][jj]+(2*np.ceil(2*np.random.random())-3)*(np.random.geometric(1.0/(1+np.exp(self.log_kappa_q[ii][jj])))-1)
if new_kappa < 0:
accept = 0
else:
lam1 = self.lambda_[jj] + 1.0*self.kappa[ii][jj]
gam1 = self.lambda_[jj]/self.mu[jj] + self.delta[jj]
loglike = lam1*np.log(gam1) - math.lgamma(lam1)+(lam1-1)*np.log(self.psi[ii+1][jj])
pnmean = self.psi[ii][jj] * self.delta[jj]
loglike = loglike + 1.0*self.kappa[ii][jj]*np.log(pnmean) - math.lgamma(1.0*self.kappa[ii][jj]+1)
lam1 = self.lambda_[jj] + 1.0*new_kappa
gam1 = self.lambda_[jj]/self.mu[jj] + self.delta[jj]
new_loglike = lam1*np.log(gam1) - math.lgamma(lam1)+(lam1-1)*np.log(self.psi[ii+1][jj])
pnmean = self.psi[ii][jj]*self.delta[jj]
new_loglike = new_loglike + new_kappa*np.log(pnmean)-math.lgamma(1.0*new_kappa+1)
log_accept = new_loglike - loglike
accept =1
if np.isnan(log_accept) or np.isinf(log_accept):
accept =0
elif log_accept <0:
accept = np.exp(log_accept)
self.kappa_accept = self.kappa_accept + accept
self.kappa_count = self.kappa_count +1
if np.random.random() < accept:
self.kappa[ii][jj] = new_kappa
self.log_kappa_q[ii][jj] = self.log_kappa_q[ii][jj] + 1.0/it**0.55*(accept-0.3)
开发者ID:KaneFu,项目名称:ngar,代码行数:33,代码来源:ngar_5years.py
示例13: theta_likelihood
def theta_likelihood(theta, S, J):
S += prior_s
J += prior_j
#If any of the values are 0 or negative return likelihood that will get rejected
if theta <= 0 or S <= 0 or J <= 0:
return 10000000
else:
return -(S * math.log(theta) + math.lgamma(theta) - math.lgamma(theta + J))
开发者ID:DrewWham,项目名称:The-Clonalescent,代码行数:8,代码来源:clonalescent.py
示例14: __compute_factor
def __compute_factor(self):
self._factor = lgamma (self.community.J + 1)
phi = table(self.community.abund)
phi += [0] * int (max (self.community.abund) - len (phi))
for spe in xrange (self.community.S):
self._factor -= log (max (1, self.community.abund[spe]))
for spe in xrange (int(max(self.community.abund))):
self._factor -= lgamma (phi[spe] + 1)
开发者ID:fransua,项目名称:ecolopy,代码行数:8,代码来源:untb_model.py
示例15: logchoose
def logchoose(ni, ki):
try:
lgn1 = lgamma(ni + 1)
lgk1 = lgamma(ki + 1)
lgnk1 = lgamma(ni - ki + 1)
except ValueError:
raise ValueError
return lgn1 - (lgnk1 + lgk1)
开发者ID:gigascience,项目名称:galaxy-genome-diversity,代码行数:8,代码来源:rank_terms.py
示例16: multiTLogPDF
def multiTLogPDF(x,mu,Sigma,nu,p):
part1 = math.lgamma( 0.5 * (p + nu) )
part2 = - math.lgamma( 0.5 * nu ) - 0.5 * p * np.log( nu ) - 0.5 * p * np.log( np.pi )
part3 = - 0.5 * np.log( np.linalg.det(Sigma) )
part4 = - 0.5 * ( nu + p ) * np.log( 1.0 + nu**(-1) * np.dot( np.dot( (x - mu), np.linalg.inv(Sigma) ), (x - mu) ) )
return part1 + part2 + part3 + part4
开发者ID:can-cs,项目名称:pmmh-correlated2015,代码行数:8,代码来源:models_dists.py
示例17: _ewens_theta_likelihood
def _ewens_theta_likelihood (self, theta):
'''
returns the likelihood of theta for a given dataset
'''
if theta < 0:
return float ('-inf')
return self.community.S * log(theta) + lgamma(theta) - lgamma(theta + self.community.J)
开发者ID:fransua,项目名称:ecolopy,代码行数:8,代码来源:ewens_model.py
示例18: p
def p(n,m,p):
"""Probability of m success out of n events, where an individual event succeeds with probability P... Useful for calculating <H^hat(j|w)> in semantic_information fun\
ction below"""
try:
return exp(lgamma(n+1) - lgamma(n-m+1) - lgamma(m+1) + m*log(p) + (n-m)*log(1.0-p))
except:
print "WARNING: domain range errer...returning 0"
return 0
开发者ID:flashman,项目名称:trend-analysis,代码行数:8,代码来源:utils.py
示例19: log_Beta
def log_Beta(alphas):
"""
the beta function is a product-of-gammas over a gamma-of-sum
the gamma function generalizes factorials
tested against wolfram alpha
"""
#return product(map(gamma,alphas)) / gamma(sum(alphas))
return sum(lgamma(alpha) for alpha in alphas) - lgamma(sum(alphas))
开发者ID:sboosali,项目名称:PGM,代码行数:8,代码来源:util.py
示例20: Bernstein
def Bernstein(n, k):
"""Bernstein polynomial.
"""
# binom
coeff = exp(lgamma(1+n)-lgamma(1+k)-lgamma(1+n-k))
return lambda x: coeff*x**k*(1-x)**(n-k)
开发者ID:michael-hartmann,项目名称:pyxgradients,代码行数:8,代码来源:bezier.py
注:本文中的math.lgamma函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论