本文整理汇总了C++中saxpy_函数的典型用法代码示例。如果您正苦于以下问题:C++ saxpy_函数的具体用法?C++ saxpy_怎么用?C++ saxpy_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了saxpy_函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: main
int main(void)
{
int i, N=4, inca=1, incb=1;
float *a, *b, *bb, alpha=0.5;
a=sf_floatalloc(N);
b=sf_floatalloc(N);
bb=sf_floatalloc(N);
a[0]=1; a[1]=2; a[2]=3; a[3]=4;
b[0]=4; b[1]=3; b[2]=2; b[3]=1;
bb[0]=4; bb[1]=3; bb[2]=2; bb[3]=1;
for(i=0;i<N;i++)
sf_warning("a[%d]=%f",i,a[i]);
for(i=0;i<N;i++)
sf_warning("b[%d]=%f",i,b[i]);
cblas_saxpy(N, 0.5 , a, 1, b, 1);
for(i=0;i<N;i++)
sf_warning("(0.5*a+b)[%d]=%f",i,b[i]);
saxpy_(&N, &alpha, a, &inca, bb, &incb);
for(i=0;i<N;i++)
sf_warning("(0.5*a+bb)[%d]=%f",i,bb[i]);
exit(0);
}
开发者ID:1014511134,项目名称:src,代码行数:30,代码来源:Testcblas.c
示例2: THBlas_
void THBlas_(axpy)(long n, real a, real *x, long incx, real *y, long incy)
{
if(n == 1)
{
incx = 1;
incy = 1;
}
#if defined(USE_BLAS) && (defined(TH_REAL_IS_DOUBLE) || defined(TH_REAL_IS_FLOAT))
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
{
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if defined(TH_REAL_IS_DOUBLE)
daxpy_(&i_n, &a, x, &i_incx, y, &i_incy);
#else
saxpy_(&i_n, &a, x, &i_incx, y, &i_incy);
#endif
return;
}
#endif
{
long i;
for(i = 0; i < n; i++)
y[i*incy] += a*x[i*incx];
}
}
开发者ID:colesbury,项目名称:torch7,代码行数:29,代码来源:THBlas.c
示例3: f2c_saxpy
int
f2c_saxpy(integer* N,
real* alpha,
real* X, integer* incX,
real* Y, integer* incY)
{
saxpy_(N, alpha, X, incX, Y, incY);
return 0;
}
开发者ID:CIBC-Internal,项目名称:clapack,代码行数:9,代码来源:fblaswr.c
示例4: do_saxpy
INLINE void do_saxpy(float *x, float *y, int iterations, int *limit)
{
REGISTER int i = 0;
extern int saxpy_();
for (;i<iterations;i++)
{
saxpy_(limit,&falpha,x,&stride,y,&stride);
}
}
开发者ID:elijah,项目名称:cachebench,代码行数:10,代码来源:bb.c
示例5: slapll_
/* Subroutine */
int slapll_(integer *n, real *x, integer *incx, real *y, integer *incy, real *ssmin)
{
/* System generated locals */
integer i__1;
/* Local variables */
real c__, a11, a12, a22, tau;
extern real sdot_(integer *, real *, integer *, real *, integer *);
extern /* Subroutine */
int slas2_(real *, real *, real *, real *, real *) ;
real ssmax;
extern /* Subroutine */
int saxpy_(integer *, real *, real *, integer *, real *, integer *), slarfg_(integer *, real *, real *, integer *, real *);
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
--y;
--x;
/* Function Body */
if (*n <= 1)
{
*ssmin = 0.f;
return 0;
}
/* Compute the QR factorization of the N-by-2 matrix ( X Y ) */
slarfg_(n, &x[1], &x[*incx + 1], incx, &tau);
a11 = x[1];
x[1] = 1.f;
c__ = -tau * sdot_(n, &x[1], incx, &y[1], incy);
saxpy_(n, &c__, &x[1], incx, &y[1], incy);
i__1 = *n - 1;
slarfg_(&i__1, &y[*incy + 1], &y[(*incy << 1) + 1], incy, &tau);
a12 = y[1];
a22 = y[*incy + 1];
/* Compute the SVD of 2-by-2 Upper triangular matrix. */
slas2_(&a11, &a12, &a22, ssmin, &ssmax);
return 0;
/* End of SLAPLL */
}
开发者ID:csapng,项目名称:libflame,代码行数:56,代码来源:slapll.c
示例6: singular
//.........这里部分代码省略.........
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).
=====================================================================
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static real c_b36 = .5f;
/* System generated locals */
integer i__1, i__2, i__3;
real r__1, r__2, r__3;
/* Local variables */
static integer jinc, jlen;
static real xbnd;
static integer imax;
static real tmax, tjjs;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
static real xmax, grow, sumj;
static integer i__, j;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static real tscal, uscal;
static integer jlast;
extern doublereal sasum_(integer *, real *, integer *);
static logical upper;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), stpsv_(char *, char *, char *, integer *,
real *, real *, integer *);
static integer ip;
static real xj;
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
static real bignum;
extern integer isamax_(integer *, real *, integer *);
static logical notran;
static integer jfirst;
static real smlnum;
static logical nounit;
static real rec, tjj;
--cnorm;
--x;
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
notran = lsame_(trans, "N");
nounit = lsame_(diag, "N");
/* Test the input parameters. */
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
*info = -2;
开发者ID:EugeneGalipchak,项目名称:antelope_contrib,代码行数:67,代码来源:slatps.c
示例7: slarz_
int slarz_(char *side, int *m, int *n, int *l,
float *v, int *incv, float *tau, float *c__, int *ldc, float *
work)
{
/* System generated locals */
int c_dim1, c_offset;
float r__1;
/* Local variables */
extern int sger_(int *, int *, float *, float *,
int *, float *, int *, float *, int *);
extern int lsame_(char *, char *);
extern int sgemv_(char *, int *, int *, float *,
float *, int *, float *, int *, float *, float *, int *), scopy_(int *, float *, int *, float *, int *),
saxpy_(int *, float *, float *, int *, float *, int *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLARZ applies a float elementary reflector H to a float M-by-N */
/* matrix C, from either the left or the right. H is represented in the */
/* form */
/* H = I - tau * v * v' */
/* where tau is a float scalar and v is a float vector. */
/* If tau = 0, then H is taken to be the unit matrix. */
/* H is a product of k elementary reflectors as returned by STZRZF. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': form H * C */
/* = 'R': form C * H */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* L (input) INTEGER */
/* The number of entries of the vector V containing */
/* the meaningful part of the Householder vectors. */
/* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
/* V (input) REAL array, dimension (1+(L-1)*ABS(INCV)) */
/* The vector v in the representation of H as returned by */
/* STZRZF. V is not used if TAU = 0. */
/* INCV (input) INTEGER */
/* The increment between elements of v. INCV <> 0. */
/* TAU (input) REAL */
/* The value tau in the representation of H. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
/* or C * H if SIDE = 'R'. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= MAX(1,M). */
/* WORK (workspace) REAL array, dimension */
/* (N) if SIDE = 'L' */
/* or (M) if SIDE = 'R' */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--v;
//.........这里部分代码省略.........
开发者ID:GuillaumeFuchs,项目名称:Ensimag,代码行数:101,代码来源:slarz.c
示例8: UPLO
//.........这里部分代码省略.........
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
Test the input parameters
Parameter adjustments
Function Body */
/* Table of constant values */
static integer c__1 = 1;
static real c_b8 = 0.f;
static real c_b14 = -1.f;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static real taui;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
static integer i;
extern /* Subroutine */ int ssyr2_(char *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
static real alpha;
extern logical lsame_(char *, char *);
static logical upper;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), ssymv_(char *, integer *, real *, real *,
integer *, real *, integer *, real *, real *, integer *),
xerbla_(char *, integer *), slarfg_(integer *, real *,
real *, integer *, real *);
#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define TAU(I) tau[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSYTD2", &i__1);
return 0;
}
/* Quick return if possible */
if (*n <= 0) {
return 0;
开发者ID:deepakantony,项目名称:vispack,代码行数:67,代码来源:ssytd2.c
示例9: MAXITS
//.........这里部分代码省略.........
criterion is satisfied, should be at least 1.
=====================================================================
Test the input parameters.
Parameter adjustments
Function Body */
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
static integer c_n1 = -1;
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2, i__3;
real r__1, r__2, r__3, r__4, r__5;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static integer jblk, nblk, jmax;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *),
snrm2_(integer *, real *, integer *);
static integer i, j, iseed[4], gpind, iinfo;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static integer b1;
extern doublereal sasum_(integer *, real *, integer *);
static integer j1;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
static real ortol;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *);
static integer indrv1, indrv2, indrv3, indrv4, indrv5, bn;
static real xj;
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *), slagtf_(
integer *, real *, real *, real *, real *, real *, real *,
integer *, integer *);
static integer nrmchk;
extern integer isamax_(integer *, real *, integer *);
extern /* Subroutine */ int slagts_(integer *, integer *, real *, real *,
real *, real *, integer *, real *, real *, integer *);
static integer blksiz;
static real onenrm, pertol;
extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real
*);
static real stpcrt, scl, eps, ctr, sep, nrm, tol;
static integer its;
static real xjm, eps1;
#define ISEED(I) iseed[(I)]
#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define W(I) w[(I)-1]
#define IBLOCK(I) iblock[(I)-1]
#define ISPLIT(I) isplit[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]
#define IFAIL(I) ifail[(I)-1]
#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]
开发者ID:deepakantony,项目名称:vispack,代码行数:67,代码来源:sstein.c
示例10: lsame_
/* Subroutine */ int stbt03_(char *uplo, char *trans, char *diag, integer *n,
integer *kd, integer *nrhs, real *ab, integer *ldab, real *scale,
real *cnorm, real *tscal, real *x, integer *ldx, real *b, integer *
ldb, real *work, real *resid)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
real r__1, r__2, r__3;
/* Local variables */
static integer j;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static real xscal;
extern /* Subroutine */ int stbmv_(char *, char *, char *, integer *,
integer *, real *, integer *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
static real tnorm, xnorm;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), slabad_(real *, real *);
static integer ix;
extern doublereal slamch_(char *);
static real bignum;
extern integer isamax_(integer *, real *, integer *);
static real smlnum, eps, err;
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]
#define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1]
/* -- LAPACK test routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
STBT03 computes the residual for the solution to a scaled triangular
system of equations A*x = s*b or A'*x = s*b when A is a
triangular band matrix. Here A' is the transpose of A, s is a scalar,
and x and b are N by NRHS matrices. The test ratio is the maximum
over the number of right hand sides of
norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
where op(A) denotes A or A' and EPS is the machine epsilon.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS (input) CHARACTER*1
Specifies the operation applied to A.
= 'N': A *x = b (No transpose)
= 'T': A'*x = b (Transpose)
= 'C': A'*x = b (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B. NRHS >= 0.
AB (input) REAL array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of the array. The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD+1.
SCALE (input) REAL
The scaling factor s used in solving the triangular system.
CNORM (input) REAL array, dimension (N)
The 1-norms of the columns of A, not counting the diagonal.
TSCAL (input) REAL
The scaling factor used in computing the 1-norms in CNORM.
CNORM actually contains the column norms of TSCAL*A.
X (input) REAL array, dimension (LDX,NRHS)
The computed solution vectors for the system of linear
//.........这里部分代码省略.........
开发者ID:zangel,项目名称:uquad,代码行数:101,代码来源:stbt03.c
示例11: slatrs_
/* Subroutine */
int slatrs_(char *uplo, char *trans, char *diag, char * normin, integer *n, real *a, integer *lda, real *x, real *scale, real *cnorm, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
real r__1, r__2, r__3;
/* Local variables */
integer i__, j;
real xj, rec, tjj;
integer jinc;
real xbnd;
integer imax;
real tmax, tjjs;
extern real sdot_(integer *, real *, integer *, real *, integer *);
real xmax, grow, sumj;
extern logical lsame_(char *, char *);
extern /* Subroutine */
int sscal_(integer *, real *, real *, integer *);
real tscal, uscal;
integer jlast;
extern real sasum_(integer *, real *, integer *);
logical upper;
extern /* Subroutine */
int saxpy_(integer *, real *, real *, integer *, real *, integer *), strsv_(char *, char *, char *, integer *, real *, integer *, real *, integer *);
extern real slamch_(char *);
extern /* Subroutine */
int xerbla_(char *, integer *);
real bignum;
extern integer isamax_(integer *, real *, integer *);
logical notran;
integer jfirst;
real smlnum;
logical nounit;
/* -- LAPACK auxiliary routine (version 3.4.2) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* September 2012 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--cnorm;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
notran = lsame_(trans, "N");
nounit = lsame_(diag, "N");
/* Test the input parameters. */
if (! upper && ! lsame_(uplo, "L"))
{
*info = -1;
}
else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C"))
{
*info = -2;
}
else if (! nounit && ! lsame_(diag, "U"))
{
*info = -3;
}
else if (! lsame_(normin, "Y") && ! lsame_(normin, "N"))
{
*info = -4;
}
else if (*n < 0)
{
*info = -5;
}
else if (*lda < max(1,*n))
{
*info = -7;
}
if (*info != 0)
{
i__1 = -(*info);
xerbla_("SLATRS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0)
{
return 0;
}
//.........这里部分代码省略.........
开发者ID:flame,项目名称:libflame,代码行数:101,代码来源:slatrs.c
示例12: saxpy
void saxpy( int n, float alpha, float *x, int incx, float *y, int incy)
{
saxpy_(&n, &alpha, x, &incx, y, &incy);
}
开发者ID:BenjaminCoquelle,项目名称:clBLAS,代码行数:4,代码来源:blas-lapack.c
示例13: saxpy_
/* Subroutine */ int sptrfs_(integer *n, integer *nrhs, real *d__, real *e,
real *df, real *ef, real *b, integer *ldb, real *x, integer *ldx,
real *ferr, real *berr, real *work, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
real r__1, r__2, r__3;
/* Local variables */
integer i__, j;
real s, bi, cx, dx, ex;
integer ix, nz;
real eps, safe1, safe2;
integer count;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *);
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer isamax_(integer *, real *, integer *);
real lstres;
extern /* Subroutine */ int spttrs_(integer *, integer *, real *, real *,
real *, integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SPTRFS improves the computed solution to a system of linear */
/* equations when the coefficient matrix is symmetric positive definite */
/* and tridiagonal, and provides error bounds and backward error */
/* estimates for the solution. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* D (input) REAL array, dimension (N) */
/* The n diagonal elements of the tridiagonal matrix A. */
/* E (input) REAL array, dimension (N-1) */
/* The (n-1) subdiagonal elements of the tridiagonal matrix A. */
/* DF (input) REAL array, dimension (N) */
/* The n diagonal elements of the diagonal matrix D from the */
/* factorization computed by SPTTRF. */
/* EF (input) REAL array, dimension (N-1) */
/* The (n-1) subdiagonal elements of the unit bidiagonal factor */
/* L from the factorization computed by SPTTRF. */
/* B (input) REAL array, dimension (LDB,NRHS) */
/* The right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (input/output) REAL array, dimension (LDX,NRHS) */
/* On entry, the solution matrix X, as computed by SPTTRS. */
/* On exit, the improved solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* FERR (output) REAL array, dimension (NRHS) */
/* The forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). */
/* BERR (output) REAL array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) REAL array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Internal Parameters */
/* =================== */
//.........这里部分代码省略.........
开发者ID:3deggi,项目名称:levmar-ndk,代码行数:101,代码来源:sptrfs.c
示例14: slamch_
//.........这里部分代码省略.........
return 0;
}
eps = slamch_("Epsilon");
/* Copy the matrix U to WORK. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__ + j * work_dim1] = 0.f;
/* L10: */
}
/* L20: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (i__ == 1) {
work[i__ + i__ * work_dim1] = df[i__];
if (*n >= 2) {
work[i__ + (i__ + 1) * work_dim1] = duf[i__];
}
if (*n >= 3) {
work[i__ + (i__ + 2) * work_dim1] = du2[i__];
}
} else if (i__ == *n) {
work[i__ + i__ * work_dim1] = df[i__];
} else {
work[i__ + i__ * work_dim1] = df[i__];
work[i__ + (i__ + 1) * work_dim1] = duf[i__];
if (i__ < *n - 1) {
work[i__ + (i__ + 2) * work_dim1] = du2[i__];
}
}
/* L30: */
}
/* Multiply on the left by L. */
lastj = *n;
for (i__ = *n - 1; i__ >= 1; --i__) {
li = dlf[i__];
i__1 = lastj - i__ + 1;
saxpy_(&i__1, &li, &work[i__ + i__ * work_dim1], ldwork, &work[i__ +
1 + i__ * work_dim1], ldwork);
ip = ipiv[i__];
if (ip == i__) {
/* Computing MIN */
i__1 = i__ + 2;
lastj = min(i__1,*n);
} else {
i__1 = lastj - i__ + 1;
sswap_(&i__1, &work[i__ + i__ * work_dim1], ldwork, &work[i__ + 1
+ i__ * work_dim1], ldwork);
}
/* L40: */
}
/* Subtract the matrix A. */
work[work_dim1 + 1] -= d__[1];
if (*n > 1) {
work[(work_dim1 << 1) + 1] -= du[1];
work[*n + (*n - 1) * work_dim1] -= dl[*n - 1];
work[*n + *n * work_dim1] -= d__[*n];
i__1 = *n - 1;
for (i__ = 2; i__ <= i__1; ++i__) {
work[i__ + (i__ - 1) * work_dim1] -= dl[i__ - 1];
work[i__ + i__ * work_dim1] -= d__[i__];
work[i__ + (i__ + 1) * work_dim1] -= du[i__];
/* L50: */
}
}
/* Compute the 1-norm of the tridiagonal matrix A. */
anorm = slangt_("1", n, &dl[1], &d__[1], &du[1]);
/* Compute the 1-norm of WORK, which is only guaranteed to be */
/* upper Hessenberg. */
*resid = slanhs_("1", n, &work[work_offset], ldwork, &rwork[1])
;
/* Compute norm(L*U - A) / (norm(A) * EPS) */
if (anorm <= 0.f) {
if (*resid != 0.f) {
*resid = 1.f / eps;
}
} else {
*resid = *resid / anorm / eps;
}
return 0;
/* End of SGTT01 */
} /* sgtt01_ */
开发者ID:juanjosegarciaripoll,项目名称:cblapack,代码行数:101,代码来源:sgtt01.c
示例15: sscal_
/* Subroutine */ int ssapps_(integer *n, integer *kev, integer *np, real *
shift, real *v, integer *ldv, real *h__, integer *ldh, real *resid,
real *q, integer *ldq, real *workd)
{
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer h_dim1, h_offset, q_dim1, q_offset, v_dim1, v_offset, i__1, i__2,
i__3, i__4;
real r__1, r__2;
/* Local variables */
static real c__, f, g;
static integer i__, j;
static real r__, s, a1, a2, a3, a4, t0, t1;
static integer jj;
static real big;
static integer iend, itop;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
sgemv_(char *, integer *, integer *, real *, real *, integer *,
real *, integer *, real *, real *, integer *, ftnlen), scopy_(
integer *, real *, integer *, real *, integer *), saxpy_(integer *
, real *, real *, integer *, real *, integer *), ivout_(integer *,
integer *, integer *, integer *, char *, ftnlen), svout_(integer
*, integer *, real *, integer *, char *, ftnlen);
extern doublereal slamch_(char *, ftnlen);
extern /* Subroutine */ int arscnd_(real *);
static real epsmch;
static integer istart, kplusp, msglvl;
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *, ftnlen), slartg_(real *, real *,
real *, real *, real *), slaset_(char *, integer *, integer *,
real *, real *, real *, integer *, ftnlen);
/* %----------------------------------------------------% */
/* | Include files for debugging and timing information | */
/* %----------------------------------------------------% */
/* \SCCS Information: @(#) */
/* FILE: debug.h SID: 2.3 DATE OF SID: 11/16/95 RELEASE: 2 */
/* %---------------------------------% */
/* | See debug.doc for documentation | */
/* %---------------------------------% */
/* %------------------% */
/* | Scalar Arguments | */
/* %------------------% */
/* %--------------------------------% */
/* | See stat.doc for documentation | */
/* %--------------------------------% */
/* \SCCS Information: @(#) */
/* FILE: stat.h SID: 2.2 DATE OF SID: 11/16/95 RELEASE: 2 */
/* %-----------------% */
/* | Array Arguments | */
/* %-----------------% */
/* %------------% */
/* | Parameters | */
/* %------------% */
/* %---------------% */
/* | Local Scalars | */
/* %---------------% */
/* %----------------------% */
/* | External Subroutines | */
/* %----------------------% */
/* %--------------------% */
/* | External Functions | */
/* %--------------------% */
/* %----------------------% */
/* | Intrinsics Functions | */
/* %----------------------% */
/* %----------------% */
/* | Data statments | */
/* %----------------% */
/* Parameter adjustments */
--workd;
--resid;
//.........这里部分代码省略.........
开发者ID:juanjosegarciaripoll,项目名称:tensor,代码行数:101,代码来源:ssapps.f.c
示例16: TRANS
//.........这里部分代码省略.........
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters
===================
ITMAX is the maximum number of steps of iterative refinement.
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static real c_b15 = -1.f;
static real c_b17 = 1.f;
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
x_offset, i__1, i__2, i__3;
real r__1, r__2, r__3;
/* Local variables */
static integer kase;
static real safe1, safe2;
static integer i__, j, k;
static real s;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
static integer count;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), saxpy_(integer *, real *, real *, integer *, real *,
integer *);
static real xk;
extern doublereal slamch_(char *);
static integer nz;
static real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *), slacon_(
integer *, real *, real *, integer *, real *, integer *);
static logical notran;
extern /* Subroutine */ int sgetrs_(char *, integer *, integer *, real *,
integer *, integer *, real *, integer *, integer *);
static char transt[1];
static real lstres, eps;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1 * 1;
af -= af_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1 * 1;
x -= x_offset;
--ferr;
--berr;
开发者ID:EugeneGalipchak,项目名称:antelope_contrib,代码行数:67,代码来源:sgerfs.c
示例17: cggbal_
int cggbal_(char *job, int *n, complex *a, int *lda,
complex *b, int *ldb, int *ilo, int *ihi, float *lscale,
float *rscale, float *work, int *info)
{
/* System generated locals */
int a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
float r__1, r__2, r__3;
/* Builtin functions */
double r_lg10(float *), r_imag(complex *), c_abs(complex *), r_sign(float *,
float *), pow_ri(float *, int *);
/* Local variables */
int i__, j, k, l, m;
float t;
int jc;
float ta, tb, tc;
int ir;
float ew;
int it, nr, ip1, jp1, lm1;
float cab, rab, ewc, cor, sum;
int nrp2, icab, lcab;
float beta, coef;
int irab, lrab;
float basl, cmax;
extern double sdot_(int *, float *, int *, float *, int *);
float coef2, coef5, gamma, alpha;
extern int lsame_(char *, char *);
extern int sscal_(int *, float *, float *, int *);
float sfmin;
extern int cswap_(int *, complex *, int *,
complex *, int *);
float sfmax;
int iflow, kount;
extern int saxpy_(int *, float *, float *, int *,
float *, int *);
float pgamma;
extern int icamax_(int *, complex *, int *);
extern double slamch_(char *);
extern int csscal_(int *, float *, complex *, int
*), xerbla_(char *, int *);
int lsfmin, lsfmax;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CGGBAL balances a pair of general complex matrices (A,B). This */
/* involves, first, permuting A and B by similarity transformations to */
/* isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
/* elements on the diagonal; and second, applying a diagonal similarity */
/* transformation to rows and columns ILO to IHI to make the rows */
/* and columns as close in norm as possible. Both steps are optional. */
/* Balancing may reduce the 1-norm of the matrices, and improve the */
/* accuracy of the computed eigenvalues and/or eigenvectors in the */
/* generalized eigenvalue problem A*x = lambda*B*x. */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies the operations to be performed on A and B: */
/* = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
/* and RSCALE(I) = 1.0 for i=1,...,N; */
/* = 'P': permute only; */
/* = 'S': scale only; */
/* = 'B': both permute and scale. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the input matrix A. */
/* On exit, A is overwritten by the balanced matrix. */
/* If JOB = 'N', A is not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= MAX(1,N). */
/* B (input/output) COMPLEX array, dimension (LDB,N) */
/* On entry, the input matrix B. */
/* On exit, B is overwritten by the balanced matrix. */
/* If JOB = 'N', B is not referenced. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= MAX(1,N). */
/* ILO (output) INTEGER */
/* IHI (output) INTEGER */
/* ILO and IHI are set to ints such that on exit */
//.........这里部分代码省略.........
开发者ID:GuillaumeFuchs,项目名称:Ensimag,代码行数:101,代码来源:cggbal.c
示例18: sger_
/* Subroutine */ int stzrqf_(integer *m, integer *n, real *a, integer *lda,
real *tau, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
real r__1;
/* Local variables */
integer i__, k, m1;
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *), sgemv_(char *,
integer *, integer *, real *, real *, integer *, real *, integer *
, real *, real *, integer *), scopy_(integer *, real *,
integer *, real *, integer *), saxpy_(integer *, real *, real *,
integer *, real *, integer *), xerbla_(char *, integer *),
slarfg_(integer *, real *, real *, integer *, real *);
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* This routine is deprecated and has been replaced by routine STZRZF. */
/* STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
/* to upper triangular form by means of orthogonal transformations. */
/* The upper trapezoidal matrix A is factored as */
/* A = ( R 0 ) * Z, */
/* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
/* triangular matrix. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= M. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the leading M-by-N upper trapezoidal part of the */
/* array A must contain the matrix to be factorized. */
/* On exit, the leading M-by-M upper triangular part of A */
/* contains the upper triangular matrix R, and elements M+1 to */
/* N of the first M rows of A, with the array TAU, represent the */
/* orthogonal matrix Z as a product of M elementary reflectors. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) REAL array, dimension (M) */
/* The scalar factors of the elementary reflectors. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The factorization is obtained by Householder's method. The kth */
/* transformation matrix, Z( k ), which is used to introduce zeros into */
/* the ( m - k + 1 )th row of A, is given in the form */
/* Z( k ) = ( I 0 ), */
/* ( 0 T( k ) ) */
/* where */
/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
/* ( 0 ) */
/* ( z( k ) ) */
/* tau is a scalar and z( k ) is an ( n - m ) element vector. */
/* tau and z( k ) are chosen to annihilate the elements of the kth row */
/* of X. */
/* The scalar tau is returned in the kth element of TAU and the vector */
/* u( k ) in the kth row of A, such that the elements of z( k ) are */
/* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
/* the upper triangular part of A. */
/* Z is given by */
/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
/* ===================================================
|
请发表评论