本文整理汇总了C++中s_mp_sub函数的典型用法代码示例。如果您正苦于以下问题:C++ s_mp_sub函数的具体用法?C++ s_mp_sub怎么用?C++ s_mp_sub使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了s_mp_sub函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: mp_sub
/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
int sa, sb, res;
sa = a->sign;
sb = b->sign;
if (sa != sb) {
/* subtract a negative from a positive, OR */
/* subtract a positive from a negative. */
/* In either case, ADD their magnitudes, */
/* and use the sign of the first number. */
c->sign = sa;
res = s_mp_add (a, b, c);
} else {
/* subtract a positive from a positive, OR */
/* subtract a negative from a negative. */
/* First, take the difference between their */
/* magnitudes, then... */
if (mp_cmp_mag (a, b) != MP_LT) {
/* Copy the sign from the first */
c->sign = sa;
/* The first has a larger or equal magnitude */
res = s_mp_sub (a, b, c);
} else {
/* The result has the *opposite* sign from */
/* the first number. */
c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
/* The second has a larger magnitude */
res = s_mp_sub (b, a, c);
}
}
return res;
}
开发者ID:appleorange1,项目名称:bitrig,代码行数:36,代码来源:bn_mp_sub.c
示例2: mp_add
/* high level addition (handles signs) */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;
/* get sign of both inputs */
sa = a->sign;
sb = b->sign;
/* handle two cases, not four */
if (sa == sb) {
/* both positive or both negative */
/* add their magnitudes, copy the sign */
c->sign = sa;
res = s_mp_add(a, b, c);
} else {
/* one positive, the other negative */
/* subtract the one with the greater magnitude from */
/* the one of the lesser magnitude. The result gets */
/* the sign of the one with the greater magnitude. */
if (mp_cmp_mag(a, b) == MP_LT) {
c->sign = sb;
res = s_mp_sub(b, a, c);
} else {
c->sign = sa;
res = s_mp_sub(a, b, c);
}
}
return res;
}
开发者ID:DCIT,项目名称:perl-CryptX,代码行数:30,代码来源:bn_mp_add.c
示例3: mp_reduce_2k_setup
/* determines the setup value */
int
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
p = mp_count_bits(a);
if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
*d = tmp.dp[0];
mp_clear(&tmp);
return MP_OKAY;
}
开发者ID:das,项目名称:tcl,代码行数:26,代码来源:bn_mp_reduce_2k_setup.c
示例4: s_mp_redc
/* computes T = REDC(T), 2^b == R */
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
{
mp_err res;
mp_size i;
i = MP_USED(T) + MP_USED(&mmm->N) + 2;
MP_CHECKOK( s_mp_pad(T, i) );
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
/* T += N * m_i * (MP_RADIX ** i); */
MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
}
s_mp_clamp(T);
/* T /= R */
s_mp_div_2d(T, mmm->b);
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
/* T = T - N */
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
#ifdef DEBUG
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
res = MP_UNDEF;
goto CLEANUP;
}
#endif
}
res = MP_OKAY;
CLEANUP:
return res;
}
开发者ID:AlfredArouna,项目名称:illumos-gate,代码行数:32,代码来源:mpmontg.c
示例5: mp_reduce_2k_l
/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
/* q = q * d */
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto LBL_ERR;
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
LBL_ERR:
mp_clear(&q);
return res;
}
开发者ID:BlastarIndia,项目名称:MoarVM,代码行数:39,代码来源:bn_mp_reduce_2k_l.c
示例6: mp_montgomery_calc_normalization
/*
* shifts with subtractions when the result is greater than b.
*
* The method is slightly modified to shift B unconditionally upto just under
* the leading bit of b. This saves alot of multiple precision shifting.
*/
int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
{
int x, bits, res;
/* how many bits of last digit does b use */
bits = mp_count_bits (b) % DIGIT_BIT;
if (b->used > 1) {
if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
return res;
}
} else {
mp_set(a, 1);
bits = 1;
}
/* now compute C = A * B mod b */
for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
return res;
}
if (mp_cmp_mag (a, b) != MP_LT) {
if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
return res;
}
}
}
return MP_OKAY;
}
开发者ID:XEQT,项目名称:SkyFireEMU,代码行数:36,代码来源:bn_mp_montgomery_calc_normalization.c
示例7: mp_dr_reduce
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Joong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
*
* Has been modified to use algorithm 7.10 from the LTM book instead
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
int
mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k) {
int err, i, m;
mp_word r;
mp_digit mu, *tmpx1, *tmpx2;
/* m = digits in modulus */
m = n->used;
/* ensure that "x" has at least 2m digits */
if (x->alloc < (m + m)) {
if ((err = mp_grow(x, m + m)) != MP_OKAY) {
return err;
}
}
/* top of loop, this is where the code resumes if
* another reduction pass is required.
*/
top:
/* aliases for digits */
/* alias for lower half of x */
tmpx1 = x->dp;
/* alias for upper half of x, or x/B**m */
tmpx2 = x->dp + m;
/* set carry to zero */
mu = 0;
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
for (i = 0; i < m; i++) {
r = (((mp_word) * tmpx2++) * (mp_word)k) + *tmpx1 + mu;
*tmpx1++ = (mp_digit)(r & MP_MASK);
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
}
/* set final carry */
*tmpx1++ = mu;
/* zero words above m */
for (i = m + 1; i < x->used; i++) {
*tmpx1++ = 0;
}
/* clamp, sub and return */
mp_clamp(x);
/* if x >= n then subtract and reduce again
* Each successive "recursion" makes the input smaller and smaller.
*/
if (mp_cmp_mag(x, n) != MP_LT) {
if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
return err;
}
goto top;
}
return MP_OKAY;
}
开发者ID:Devronium,项目名称:ConceptApplicationServer,代码行数:73,代码来源:bn_mp_dr_reduce.c
示例8: s_mp_mul_mont
/*! c <- REDC( a * b ) mod N
\param a < N i.e. "reduced"
\param b < N i.e. "reduced"
\param mmm modulus N and n0' of N
*/
mp_err
s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm)
{
mp_digit *pb;
mp_digit m_i;
mp_err res;
mp_size ib; /* "index b": index of current digit of B */
mp_size useda, usedb;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
b = a;
a = xch;
}
MP_USED(c) = 1;
MP_DIGIT(c, 0) = 0;
ib = (MP_USED(&mmm->N) << 1) + 1;
if ((res = s_mp_pad(c, ib)) != MP_OKAY)
goto CLEANUP;
useda = MP_USED(a);
pb = MP_DIGITS(b);
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
/* Outer loop: Digits of b */
usedb = MP_USED(b);
for (ib = 1; ib < usedb; ib++) {
mp_digit b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
if (usedb < MP_USED(&mmm->N)) {
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib) {
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
}
s_mp_clamp(c);
s_mp_rshd(c, MP_USED(&mmm->N)); /* c /= R */
if (s_mp_cmp(c, &mmm->N) >= 0) {
MP_CHECKOK(s_mp_sub(c, &mmm->N));
}
res = MP_OKAY;
CLEANUP:
return res;
}
开发者ID:emaldona,项目名称:nss,代码行数:63,代码来源:mpmontg.c
示例9: mp_reduce_2k_setup_l
/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto ERR;
}
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear(&tmp);
return res;
}
开发者ID:flwh,项目名称:Alcatel_OT_985_kernel,代码行数:22,代码来源:bn_mp_reduce_2k_setup_l.c
示例10: mp_reduce_2k
/* reduces a modulo n where n is of the form 2**p - k */
int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
if (k != 1) {
/* q = q * k */
if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
goto ERR;
}
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
ERR:
mp_clear(&q);
return res;
}
开发者ID:TheTypoMaster,项目名称:AH4222,代码行数:39,代码来源:bn_mp_reduce_2k.c
示例11: mp_karatsuba_sqr
/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
* See comments of karatsuba_mul for details. It
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
err = MP_MEM;
/* min # of digits */
B = a->used;
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size(&x0, B) != MP_OKAY)
goto LBL_ERR;
if (mp_init_size(&x1, a->used - B) != MP_OKAY)
goto X0;
/* init temps */
if (mp_init_size(&t1, a->used * 2) != MP_OKAY)
goto X1;
if (mp_init_size(&t2, a->used * 2) != MP_OKAY)
goto T1;
if (mp_init_size(&x0x0, B * 2) != MP_OKAY)
goto T2;
if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY)
goto X0X0;
{
int x;
mp_digit *dst, *src;
src = a->dp;
/* now shift the digits */
dst = x0.dp;
for (x = 0; x < B; x++) {
*dst++ = *src++;
}
dst = x1.dp;
for (x = B; x < a->used; x++) {
*dst++ = *src++;
}
}
x0.used = B;
x1.used = a->used - B;
mp_clamp(&x0);
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr(&x0, &x0x0) != MP_OKAY)
goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr(&x1, &x1x1) != MP_OKAY)
goto X1X1; /* x1x1 = x1*x1 */
/* now calc (x1+x0)**2 */
if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr(&t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1; /* t2 = x0x0 + x1x1 */
if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
/* shift by B */
if (mp_lshd(&t1, B) != MP_OKAY)
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd(&x1x1, B * 2) != MP_OKAY)
goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add(&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add(&t1, &x1x1, b) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
X1X1:
mp_clear(&x1x1);
X0X0:
mp_clear(&x0x0);
T2:
mp_clear(&t2);
T1:
mp_clear(&t1);
X1:
mp_clear(&x1);
//.........这里部分代码省略.........
开发者ID:libtom,项目名称:libtommath,代码行数:101,代码来源:bn_mp_karatsuba_sqr.c
示例12: fast_mp_montgomery_reduce
//.........这里部分代码省略.........
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
* by casting the value down to a mp_digit. Note this requires
* that W[ix-1] have the carry cleared (see after the inner loop)
*/
register mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
/* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
* by b**i is handled by offseting which columns the results
* are added to.
*
* Note the comba method normally doesn't handle carries in the
* inner loop In this case we fix the carry from the previous
* column since the Montgomery reduction requires digits of the
* result (so far) [see above] to work. This is
* handled by fixing up one carry after the inner loop. The
* carry fixups are done in order so after these loops the
* first m->used words of W[] have the carries fixed
*/
{
register int iy;
register mp_digit *tmpn;
register mp_word *_W;
/* alias for the digits of the modulus */
tmpn = n->dp;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
for (iy = 0; iy < n->used; iy++) {
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
}
}
/* now fix carry for next digit, W[ix+1] */
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
}
/* now we have to propagate the carries and
* shift the words downward [all those least
* significant digits we zeroed].
*/
{
register mp_digit *tmpx;
register mp_word *_W, *_W1;
/* nox fix rest of carries */
/* alias for current word */
_W1 = W + ix;
/* alias for next word, where the carry goes */
_W = W + ++ix;
for (; ix <= n->used * 2 + 1; ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
/* copy out, A = A/b**n
*
* The result is A/b**n but instead of converting from an
* array of mp_word to mp_digit than calling mp_rshd
* we just copy them in the right order
*/
/* alias for destination word */
tmpx = x->dp;
/* alias for shifted double precision result */
_W = W + n->used;
for (ix = 0; ix < n->used + 1; ix++) {
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits
*/
for (; ix < olduse; ix++) {
*tmpx++ = 0;
}
}
/* set the max used and clamp */
x->used = n->used + 1;
mp_clamp (x);
/* if A >= m then A = A - m */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
开发者ID:NHoeller,项目名称:BigInteger,代码行数:101,代码来源:bn_fast_mp_montgomery_reduce.c
示例13: mp_karatsuba_mul
//.........这里部分代码省略.........
/* init temps */
if (mp_init_size (&t1, B * 2) != MP_OKAY)
goto Y1;
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
goto X0Y0;
/* now shift the digits */
x0.used = y0.used = B;
x1.used = a->used - B;
y1.used = b->used - B;
{
register int x;
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
*/
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
*tmpx++ = *tmpa++;
*tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
*tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
*tmpy++ = *tmpb++;
}
}
/* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
/* now calc x1+x0 and y1+y0 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x1 - x0 */
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
goto X1Y1; /* t2 = y1 - y0 */
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
/* add x0y0 */
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
goto X1Y1; /* t2 = x0y0 + x1y1 */
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
goto X1Y1; /* x1y1 = x1y1 << 2*B */
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 */
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
/* Algorithm succeeded set the return code to MP_OKAY */
err = MP_OKAY;
X1Y1:
mp_clear (&x1y1);
X0Y0:
mp_clear (&x0y0);
T1:
mp_clear (&t1);
Y1:
mp_clear (&y1);
Y0:
mp_clear (&y0);
X1:
mp_clear (&x1);
X0:
mp_clear (&x0);
ERR:
return err;
}
开发者ID:sasukeuni,项目名称:stepmania,代码行数:101,代码来源:bn_mp_karatsuba_mul.c
示例14: mp_karatsuba_sqr
/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
* See comments of karatsuba_mul for details. It
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
err = MP_MEM;
/* min # of digits */
B = USED(a);
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, USED(a) - B) != MP_OKAY)
goto X0;
/* init temps */
if (mp_init_size (&t1, USED(a) * 2) != MP_OKAY)
goto X1;
if (mp_init_size (&t2, USED(a) * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
goto T2;
if (mp_init_size (&x1x1, (USED(a) - B) * 2) != MP_OKAY)
goto X0X0;
{
register int x;
register mp_digit *dst, *src;
src = DIGITS(a);
/* now shift the digits */
dst = DIGITS(&x0);
for (x = 0; x < B; x++) {
*dst++ = *src++;
}
dst = DIGITS(&x1);
for (x = B; x < USED(a); x++) {
*dst++ = *src++;
}
}
SET_USED(&x0,B);
SET_USED(&x1,USED(a) - B);
mp_clamp (&x0);
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
goto X1X1; /* x1x1 = x1*x1 */
/* now calc (x1+x0)**2 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1; /* t2 = x0x0 + x1x1 */
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
开发者ID:asr,项目名称:uhc,代码行数:99,代码来源:bn_mp_karatsuba_sqr.c
示例15: mp_reduce
/* reduces x mod m, assumes 0 < x < m**2, mu is
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
mp_int q;
int res, um = USED(m);
/* q = x */
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
return res;
}
/* q1 = x / b**(k-1) */
mp_rshd (&q, um - 1);
/* according to HAC this optimization is ok */
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
goto CLEANUP;
}
} else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
#else
{
res = MP_VAL;
goto CLEANUP;
}
#endif
}
/* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);
/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
goto CLEANUP;
}
/* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
goto CLEANUP;
}
/* x = x - q */
if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
goto CLEANUP;
}
/* If x < 0, add b**(k+1) to it */
if (mp_cmp_d (x, 0) == MP_LT) {
mp_set (&q, 1);
if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
goto CLEANUP;
if ((res = mp_add (x, &q, x)) != MP_OKAY)
goto CLEANUP;
}
/* Back off if it's too big */
while (mp_cmp (x, m) != MP_LT) {
if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
goto CLEANUP;
}
}
CLEANUP:
mp_clear (&q);
return res;
}
开发者ID:asr,项目名称:uhc,代码行数:78,代码来源:bn_mp_reduce.c
示例16: mp_montgomery_reduce
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;
/* can the fast reduction [comba] method be used?
*
* Note that unlike in mul you're safely allowed *less*
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
digs = n->used * 2 + 1;
if ((digs < MP_WARRAY) &&
n->used <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_mp_montgomery_reduce (x, n, rho);
}
/* grow the input as required */
if (x->alloc < digs) {
if ((res = mp_grow (x, digs)) != MP_OKAY) {
return res;
}
}
x->used = digs;
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * rho mod b
*
* The value of rho must be precalculated via
* montgomery_setup() such that
* it equals -1/n0 mod b this allows the
* following inner loop to reduce the
* input one digit at a time
*/
mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
/* a = a + mu * m * b**i */
{
register int iy;
register mp_digit *tmpn, *tmpx, u;
register mp_word r;
/* alias for digits of the modulus */
tmpn = n->dp;
/* alias for the digits of x [the input] */
tmpx = x->dp + ix;
/* set the carry to zero */
u = 0;
/* Multiply and add in place */
for (iy = 0; iy < n->used; iy++) {
/* compute product and sum */
r = ((mp_word)mu) * ((mp_word)*tmpn++) +
((mp_word) u) + ((mp_word) * tmpx);
/* get carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
/* fix digit */
*tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
}
/* At this point the ix'th digit of x should be zero */
/* propagate carries upwards as required*/
while (u) {
*tmpx += u;
u = *tmpx >> DIGIT_BIT;
*tmpx++ &= MP_MASK;
}
}
}
/* at this point the n.used'th least
* significant digits of x are all zero
* which means we can shift x to the
* right by n.used digits and the
* residue is unchanged.
*/
/* x = x/b**n.used */
mp_clamp(x);
mp_rshd (x, n->used);
/* if x >= n then x = x - n */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
开发者ID:jamesyan84,项目名称:mt36k_android_4.0.4,代码行数:96,代码来源:bn_mp_montgomery_reduce.c
示例17: mp_gcd
/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;
/* either zero than gcd is the largest */
if (mp_iszero (a) == MP_YES) {
return mp_abs (b, c);
}
if (mp_iszero (b) == MP_YES) {
return mp_abs (a, c);
}
/* get copies of a and b we can modify */
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
goto LBL_U;
}
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MIN(u_lsb, v_lsb);
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
while (mp_iszero(&v) == MP_NO) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto LBL_V;
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
goto LBL_V;
}
c->sign = MP_ZPOS;
res = MP_OKAY;
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
return res;
}
开发者ID:Danielmachon,项目名称:libtommath,代码行数:83,代码来源:bn_mp_gcd.c
注:本文中的s_mp_sub函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论