• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C++ r_cnjg函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中r_cnjg函数的典型用法代码示例。如果您正苦于以下问题:C++ r_cnjg函数的具体用法?C++ r_cnjg怎么用?C++ r_cnjg使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了r_cnjg函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: r_cnjg

/* DECK CDOTC */
/* Complex */ void cdotc_(complex * ret_val, integer *n, complex *cx, integer 
	*incx, complex *cy, integer *incy)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    complex q__1, q__2, q__3;

    /* Local variables */
    static integer i__, ns, kx, ky;

/* ***BEGIN PROLOGUE  CDOTC */
/* ***PURPOSE  Dot product of two complex vectors using the complex */
/*            conjugate of the first vector. */
/* ***LIBRARY   SLATEC (BLAS) */
/* ***CATEGORY  D1A4 */
/* ***TYPE      COMPLEX (CDOTC-C) */
/* ***KEYWORDS  BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR */
/* ***AUTHOR  Lawson, C. L., (JPL) */
/*           Hanson, R. J., (SNLA) */
/*           Kincaid, D. R., (U. of Texas) */
/*           Krogh, F. T., (JPL) */
/* ***DESCRIPTION */

/*                B L A S  Subprogram */
/*    Description of Parameters */

/*     --Input-- */
/*        N  number of elements in input vector(s) */
/*       CX  complex vector with N elements */
/*     INCX  storage spacing between elements of CX */
/*       CY  complex vector with N elements */
/*     INCY  storage spacing between elements of CY */

/*     --Output-- */
/*    CDOTC  complex result (zero if N .LE. 0) */

/*     Returns the dot product of complex CX and CY, using CONJUGATE(CX) */
/*     CDOTC = SUM for I = 0 to N-1 of CONJ(CX(LX+I*INCX))*CY(LY+I*INCY), */
/*     where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is */
/*     defined in a similar way using INCY. */

/* ***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. */
/*                 Krogh, Basic linear algebra subprograms for Fortran */
/*                 usage, Algorithm No. 539, Transactions on Mathematical */
/*                 Software 5, 3 (September 1979), pp. 308-323. */
/* ***ROUTINES CALLED  (NONE) */
/* ***REVISION HISTORY  (YYMMDD) */
/*   791001  DATE WRITTEN */
/*   890831  Modified array declarations.  (WRB) */
/*   890831  REVISION DATE from Version 3.2 */
/*   891214  Prologue converted to Version 4.0 format.  (BAB) */
/*   920310  Corrected definition of LX in DESCRIPTION.  (WRB) */
/*   920501  Reformatted the REFERENCES section.  (WRB) */
/* ***END PROLOGUE  CDOTC */
/* ***FIRST EXECUTABLE STATEMENT  CDOTC */
    /* Parameter adjustments */
    --cy;
    --cx;

    /* Function Body */
     ret_val->r = 0.f,  ret_val->i = 0.f;
    if (*n <= 0) {
	return ;
    }
    if (*incx == *incy && *incx > 0) {
	goto L20;
    }

/*     Code for unequal or nonpositive increments. */

    kx = 1;
    ky = 1;
    if (*incx < 0) {
	kx = (1 - *n) * *incx + 1;
    }
    if (*incy < 0) {
	ky = (1 - *n) * *incy + 1;
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	r_cnjg(&q__3, &cx[kx]);
	i__2 = ky;
	q__2.r = q__3.r * cy[i__2].r - q__3.i * cy[i__2].i, q__2.i = q__3.r * 
		cy[i__2].i + q__3.i * cy[i__2].r;
	q__1.r =  ret_val->r + q__2.r, q__1.i =  ret_val->i + q__2.i;
	 ret_val->r = q__1.r,  ret_val->i = q__1.i;
	kx += *incx;
	ky += *incy;
/* L10: */
    }
    return ;

/*     Code for equal, positive increments. */

L20:
    ns = *n * *incx;
    i__1 = ns;
    i__2 = *incx;
    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
//.........这里部分代码省略.........
开发者ID:Rufflewind,项目名称:cslatec,代码行数:101,代码来源:cdotc.c


示例2: r_imag

/* Subroutine */ int clatrs_(char *uplo, char *trans, char *diag, char *
	normin, integer *n, complex *a, integer *lda, complex *x, real *scale, 
	 real *cnorm, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4;
    complex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    double r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, j;
    real xj, rec, tjj;
    integer jinc;
    real xbnd;
    integer imax;
    real tmax;
    complex tjjs;
    real xmax, grow;
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real tscal;
    complex uscal;
    integer jlast;
    extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer 
	    *, complex *, integer *);
    complex csumj;
    extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, 
	    integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */ int ctrsv_(char *, char *, char *, integer *, 
	    complex *, integer *, complex *, integer *), slabad_(real *, real *);
    extern integer icamax_(integer *, complex *, integer *);
    extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *), xerbla_(char *, integer *);
    real bignum;
    extern integer isamax_(integer *, real *, integer *);
    extern doublereal scasum_(integer *, complex *, integer *);
    logical notran;
    integer jfirst;
    real smlnum;
    logical nounit;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLATRS solves one of the triangular systems */

/*     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b, */

/*  with scaling to prevent overflow.  Here A is an upper or lower */
/*  triangular matrix, A**T denotes the transpose of A, A**H denotes the */
/*  conjugate transpose of A, x and b are n-element vectors, and s is a */
/*  scaling factor, usually less than or equal to 1, chosen so that the */
/*  components of x will be less than the overflow threshold.  If the */
/*  unscaled problem will not cause overflow, the Level 2 BLAS routine */
/*  CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), */
/*  then s is set to 0 and a non-trivial solution to A*x = 0 is returned. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the operation applied to A. */
/*          = 'N':  Solve A * x = s*b     (No transpose) */
/*          = 'T':  Solve A**T * x = s*b  (Transpose) */
/*          = 'C':  Solve A**H * x = s*b  (Conjugate transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  NORMIN  (input) CHARACTER*1 */
/*          Specifies whether CNORM has been set or not. */
/*          = 'Y':  CNORM contains the column norms on entry */
/*          = 'N':  CNORM is not set on entry.  On exit, the norms will */
/*                  be computed and stored in CNORM. */
//.........这里部分代码省略.........
开发者ID:3deggi,项目名称:levmar-ndk,代码行数:101,代码来源:clatrs.c


示例3: dimension

/* Subroutine */ int cgeql2_(integer *m, integer *n, complex *a, integer *lda,
	 complex *tau, complex *work, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CGEQL2 computes a QL factorization of a complex m by n matrix A:   
    A = Q * L.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,N)   
            On entry, the m by n matrix A.   
            On exit, if m >= n, the lower triangle of the subarray   
            A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; 
  
            if m <= n, the elements on and below the (n-m)-th   
            superdiagonal contain the m by n lower trapezoidal matrix L; 
  
            the remaining elements, with the array TAU, represent the   
            unitary matrix Q as a product of elementary reflectors   
            (see Further Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    TAU     (output) COMPLEX array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors (see Further 
  
            Details).   

    WORK    (workspace) COMPLEX array, dimension (N)   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(k) . . . H(2) H(1), where k = min(m,n).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a complex scalar, and v is a complex vector with   
    v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in 
  
    A(1:m-k+i-1,n-k+i), and tau in TAU(i).   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    complex q__1;
    /* Builtin functions */
    void r_cnjg(complex *, complex *);
    /* Local variables */
    static integer i, k;
    static complex alpha;
    extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
	    , integer *, complex *, complex *, integer *, complex *), 
	    clarfg_(integer *, complex *, complex *, integer *, complex *), 
	    xerbla_(char *, integer *);



#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    if (*m < 0) {
//.........这里部分代码省略.........
开发者ID:deepakantony,项目名称:vispack,代码行数:101,代码来源:cgeql2.c


示例4: r_cnjg

/* Subroutine */ int ctrexc_(char *compq, integer *n, complex *t, integer *
	ldt, complex *q, integer *ldq, integer *ifst, integer *ilst, integer *
	info, ftnlen compq_len)
{
    /* System generated locals */
    integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2, i__3;
    complex q__1;

    /* Builtin functions */
    void r_cnjg(complex *, complex *);

    /* Local variables */
    static integer k, m1, m2, m3;
    static real cs;
    static complex t11, t22, sn, temp;
    extern /* Subroutine */ int crot_(integer *, complex *, integer *, 
	    complex *, integer *, real *, complex *);
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static logical wantq;
    extern /* Subroutine */ int clartg_(complex *, complex *, real *, complex 
	    *, complex *), xerbla_(char *, integer *, ftnlen);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     March 31, 1993 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CTREXC reorders the Schur factorization of a complex matrix */
/*  A = Q*T*Q**H, so that the diagonal element of T with row index IFST */
/*  is moved to row ILST. */

/*  The Schur form T is reordered by a unitary similarity transformation */
/*  Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by */
/*  postmultplying it with Z. */

/*  Arguments */
/*  ========= */

/*  COMPQ   (input) CHARACTER*1 */
/*          = 'V':  update the matrix Q of Schur vectors; */
/*          = 'N':  do not update Q. */

/*  N       (input) INTEGER */
/*          The order of the matrix T. N >= 0. */

/*  T       (input/output) COMPLEX array, dimension (LDT,N) */
/*          On entry, the upper triangular matrix T. */
/*          On exit, the reordered upper triangular matrix. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= max(1,N). */

/*  Q       (input/output) COMPLEX array, dimension (LDQ,N) */
/*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
/*          On exit, if COMPQ = 'V', Q has been postmultiplied by the */
/*          unitary transformation matrix Z which reorders T. */
/*          If COMPQ = 'N', Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max(1,N). */

/*  IFST    (input) INTEGER */
/*  ILST    (input) INTEGER */
/*          Specify the reordering of the diagonal elements of T: */
/*          The element with row index IFST is moved to row ILST by a */
/*          sequence of transpositions between adjacent elements. */
/*          1 <= IFST <= N; 1 <= ILST <= N. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters. */

    /* Parameter adjustments */
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    q_dim1 = *ldq;
//.........这里部分代码省略.........
开发者ID:Electrostatics,项目名称:FETK,代码行数:101,代码来源:ctrexc.c


示例5: cgeev_

 int cgeev_(char *jobvl, char *jobvr, int *n, complex *a, 
	int *lda, complex *w, complex *vl, int *ldvl, complex *vr, 
	int *ldvr, complex *work, int *lwork, float *rwork, int *
	info)
{
    /* System generated locals */
    int a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    float r__1, r__2;
    complex q__1, q__2;

    /* Builtin functions */
    double sqrt(double), r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    int i__, k, ihi;
    float scl;
    int ilo;
    float dum[1], eps;
    complex tmp;
    int ibal;
    char side[1];
    float anrm;
    int ierr, itau, iwrk, nout;
    extern  int cscal_(int *, complex *, complex *, 
	    int *);
    extern int lsame_(char *, char *);
    extern double scnrm2_(int *, complex *, int *);
    extern  int cgebak_(char *, char *, int *, int *, 
	    int *, float *, int *, complex *, int *, int *), cgebal_(char *, int *, complex *, int *, 
	    int *, int *, float *, int *), slabad_(float *, 
	    float *);
    int scalea;
    extern double clange_(char *, int *, int *, complex *, 
	    int *, float *);
    float cscale;
    extern  int cgehrd_(int *, int *, int *, 
	    complex *, int *, complex *, complex *, int *, int *),
	     clascl_(char *, int *, int *, float *, float *, int *, 
	    int *, complex *, int *, int *);
    extern double slamch_(char *);
    extern  int csscal_(int *, float *, complex *, int 
	    *), clacpy_(char *, int *, int *, complex *, int *, 
	    complex *, int *), xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    int select[1];
    float bignum;
    extern int isamax_(int *, float *, int *);
    extern  int chseqr_(char *, char *, int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    complex *, int *, int *), ctrevc_(char *, 
	    char *, int *, int *, complex *, int *, complex *, 
	    int *, complex *, int *, int *, int *, complex *, 
	    float *, int *), cunghr_(int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    int *);
    int minwrk, maxwrk;
    int wantvl;
    float smlnum;
    int hswork, irwork;
    int lquery, wantvr;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component float. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of are computed. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */
//.........这里部分代码省略.........
开发者ID:GuillaumeFuchs,项目名称:Ensimag,代码行数:101,代码来源:cgeev.c


示例6: chgeqz_

 int chgeqz_(char *job, char *compq, char *compz, int *n, 
	int *ilo, int *ihi, complex *h__, int *ldh, complex *t, 
	int *ldt, complex *alpha, complex *beta, complex *q, int *ldq, 
	 complex *z__, int *ldz, complex *work, int *lwork, float *
	rwork, int *info)
{
    /* System generated locals */
    int h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    float r__1, r__2, r__3, r__4, r__5, r__6;
    complex q__1, q__2, q__3, q__4, q__5, q__6;

    /* Builtin functions */
    double c_abs(complex *);
    void r_cnjg(complex *, complex *);
    double r_imag(complex *);
    void c_div(complex *, complex *, complex *), pow_ci(complex *, complex *, 
	    int *), c_sqrt(complex *, complex *);

    /* Local variables */
    float c__;
    int j;
    complex s, t1;
    int jc, in;
    complex u12;
    int jr;
    complex ad11, ad12, ad21, ad22;
    int jch;
    int ilq, ilz;
    float ulp;
    complex abi22;
    float absb, atol, btol, temp;
    extern  int crot_(int *, complex *, int *, 
	    complex *, int *, float *, complex *);
    float temp2;
    extern  int cscal_(int *, complex *, complex *, 
	    int *);
    extern int lsame_(char *, char *);
    complex ctemp;
    int iiter, ilast, jiter;
    float anorm, bnorm;
    int maxit;
    complex shift;
    float tempr;
    complex ctemp2, ctemp3;
    int ilazr2;
    float ascale, bscale;
    complex signbc;
    extern double slamch_(char *), clanhs_(char *, int *, 
	    complex *, int *, float *);
    extern  int claset_(char *, int *, int *, complex 
	    *, complex *, complex *, int *), clartg_(complex *, 
	    complex *, float *, complex *, complex *);
    float safmin;
    extern  int xerbla_(char *, int *);
    complex eshift;
    int ilschr;
    int icompq, ilastm;
    complex rtdisc;
    int ischur;
    int ilazro;
    int icompz, ifirst, ifrstm, istart;
    int lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHGEQZ computes the eigenvalues of a complex matrix pair (H,T), */
/*  where H is an upper Hessenberg matrix and T is upper triangular, */
/*  using the single-shift QZ method. */
/*  Matrix pairs of this type are produced by the reduction to */
/*  generalized upper Hessenberg form of a complex matrix pair (A,B): */

/*     A = Q1*H*Z1**H,  B = Q1*T*Z1**H, */

/*  as computed by CGGHRD. */

/*  If JOB='S', then the Hessenberg-triangular pair (H,T) is */
/*  also reduced to generalized Schur form, */

/*     H = Q*S*Z**H,  T = Q*P*Z**H, */

/*  where Q and Z are unitary matrices and S and P are upper triangular. */

/*  Optionally, the unitary matrix Q from the generalized Schur */
/*  factorization may be postmultiplied into an input matrix Q1, and the */
/*  unitary matrix Z may be postmultiplied into an input matrix Z1. */
/*  If Q1 and Z1 are the unitary matrices from CGGHRD that reduced */
/*  the matrix pair (A,B) to generalized Hessenberg form, then the output */
//.........这里部分代码省略.........
开发者ID:GuillaumeFuchs,项目名称:Ensimag,代码行数:101,代码来源:chgeqz.c


示例7: lsame_


//.........这里部分代码省略.........
/*     Compute condition numbers if desired */
/*     (CWorkspace: need N*N+2*N unless SENSE = 'E') */
/*     (RWorkspace: need 2*N unless SENSE = 'E') */

    if (! wntsnn) {
	ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &rwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
		r__1 = vl[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
		rwork[k] = r__1 * r__1 + r__2 * r__2;
	    }
	    k = isamax_(n, &rwork[1], &c__1);
	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
	    r__1 = sqrt(rwork[k]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = k + i__ * vl_dim1;
	    i__3 = k + i__ * vl_dim1;
	    r__1 = vl[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
		r__1 = vr[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
开发者ID:juanjosegarciaripoll,项目名称:cblapack,代码行数:67,代码来源:cgeevx.c


示例8: r_imag

/*<       subroutine csvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info) >*/
/* Subroutine */ int csvdc_(complex *x, integer *ldx, integer *n, integer *p, 
        complex *s, complex *e, complex *u, integer *ldu, complex *v, integer 
        *ldv, complex *work, integer *job, integer *info)
{
    /* System generated locals */
    integer x_dim1, x_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, 
            i__3, i__4;
    real r__1, r__2, r__3, r__4;
    complex q__1, q__2, q__3;

    /* Builtin functions */
    double r_imag(complex *), c_abs(complex *);
    void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);
    double sqrt(doublereal);

    /* Local variables */
    real b, c__, f, g;
    integer i__, j, k, l=0, m;
    complex r__, t;
    real t1, el;
    integer kk;
    real cs;
    integer ll, mm, ls=0;
    real sl;
    integer lu;
    real sm, sn;
    integer lm1, mm1, lp1, mp1, nct, ncu, lls, nrt;
    real emm1, smm1;
    integer kase, jobu, iter;
    real test;
    integer nctp1, nrtp1;
    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
            integer *);
    real scale;
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
            *, complex *, integer *);
    real shift;
    extern /* Subroutine */ int cswap_(integer *, complex *, integer *, 
            complex *, integer *);
    integer maxit;
    extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, 
            integer *, complex *, integer *), csrot_(integer *, complex *, 
            integer *, complex *, integer *, real *, real *);
    logical wantu, wantv;
    extern /* Subroutine */ int srotg_(real *, real *, real *, real *);
    real ztest;
    extern doublereal scnrm2_(integer *, complex *, integer *);

/*<       integer ldx,n,p,ldu,ldv,job,info >*/
/*<       complex x(ldx,1),s(1),e(1),u(ldu,1),v(ldv,1),work(1) >*/


/*     csvdc is a subroutine to reduce a complex nxp matrix x by */
/*     unitary transformations u and v to diagonal form.  the */
/*     diagonal elements s(i) are the singular values of x.  the */
/*     columns of u are the corresponding left singular vectors, */
/*     and the columns of v the right singular vectors. */

/*     on entry */

/*         x         complex(ldx,p), where ldx.ge.n. */
/*                   x contains the matrix whose singular value */
/*                   decomposition is to be computed.  x is */
/*                   destroyed by csvdc. */

/*         ldx       integer. */
/*                   ldx is the leading dimension of the array x. */

/*         n         integer. */
/*                   n is the number of rows of the matrix x. */

/*         p         integer. */
/*                   p is the number of columns of the matrix x. */

/*         ldu       integer. */
/*                   ldu is the leading dimension of the array u */
/*                   (see below). */

/*         ldv       integer. */
/*                   ldv is the leading dimension of the array v */
/*                   (see below). */

/*         work      complex(n). */
/*                   work is a scratch array. */

/*         job       integer. */
/*                   job controls the computation of the singular */
/*                   vectors.  it has the decimal expansion ab */
/*                   with the following meaning */

/*                        a.eq.0    do not compute the left singular */
/*                                  vectors. */
/*                        a.eq.1    return the n left singular vectors */
/*                                  in u. */
/*                        a.ge.2    returns the first min(n,p) */
/*                                  left singular vectors in u. */
/*                        b.eq.0    do not compute the right singular */
/*                                  vectors. */
/*                        b.eq.1    return the right singular vectors */
//.........这里部分代码省略.........
开发者ID:151706061,项目名称:ITK,代码行数:101,代码来源:csvdc.c


示例9: r_cnjg

/* Subroutine */ int chemv_(char *uplo, integer *n, complex *alpha, complex *
        a, integer *lda, complex *x, integer *incx, complex *beta, complex *y,
         integer *incy)
{


    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1;
    complex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    void r_cnjg(complex *, complex *);

    /* Local variables */
    static integer info;
    static complex temp1, temp2;
    static integer i, j;
    extern logical lsame_(char *, char *);
    static integer ix, iy, jx, jy, kx, ky;
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  Purpose
    =======

    CHEMV  performs the matrix-vector  operation

       y := alpha*A*x + beta*y,

    where alpha and beta are scalars, x and y are n element vectors and
    A is an n by n hermitian matrix.

    Parameters
    ==========

    UPLO   - CHARACTER*1.
             On entry, UPLO specifies whether the upper or lower
             triangular part of the array A is to be referenced as
             follows:

                UPLO = 'U' or 'u'   Only the upper triangular part of A
                                    is to be referenced.

                UPLO = 'L' or 'l'   Only the lower triangular part of A
                                    is to be referenced.

             Unchanged on exit.

    N      - INTEGER.
             On entry, N specifies the order of the matrix A.
             N must be at least zero.
             Unchanged on exit.

    ALPHA  - COMPLEX         .
             On entry, ALPHA specifies the scalar alpha.
             Unchanged on exit.

    A      - COMPLEX          array of DIMENSION ( LDA, n ).
             Before entry with  UPLO = 'U' or 'u', the leading n by n
             upper triangular part of the array A must contain the upper

             triangular part of the hermitian matrix and the strictly
             lower triangular part of A is not referenced.
             Before entry with UPLO = 'L' or 'l', the leading n by n
             lower triangular part of the array A must contain the lower

             triangular part of the hermitian matrix and the strictly
             upper triangular part of A is not referenced.
             Note that the imaginary parts of the diagonal elements need

             not be set and are assumed to be zero.
             Unchanged on exit.

    LDA    - INTEGER.
             On entry, LDA specifies the first dimension of A as declared

             in the calling (sub) program. LDA must be at least
             max( 1, n ).
             Unchanged on exit.

    X      - COMPLEX          array of dimension at least
             ( 1 + ( n - 1 )*abs( INCX ) ).
             Before entry, the incremented array X must contain the n
             element vector x.
             Unchanged on exit.

    INCX   - INTEGER.
             On entry, INCX specifies the increment for the elements of
             X. INCX must not be zero.
             Unchanged on exit.

    BETA   - COMPLEX         .
             On entry, BETA specifies the scalar beta. When BETA is
             supplied as zero then Y need not be set on input.
             Unchanged on exit.

    Y      - COMPLEX          array of dimension at least
             ( 1 + ( n - 1 )*abs( INCY ) ).
             Before entry, the incremented array Y must contain the n
//.........这里部分代码省略.........
开发者ID:DarkOfTheMoon,项目名称:HONEI,代码行数:101,代码来源:chemv.c


示例10: r_cnjg

/* Subroutine */ int clagtm_(char *trans, integer *n, integer *nrhs, real *
	alpha, complex *dl, complex *d__, complex *du, complex *x, integer *
	ldx, real *beta, complex *b, integer *ldb)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, 
	    i__6, i__7, i__8, i__9, i__10;
    complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9;

    /* Builtin functions */
    void r_cnjg(complex *, complex *);

    /* Local variables */
    integer i__, j;
    extern logical lsame_(char *, char *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLAGTM performs a matrix-vector product of the form */

/*     B := alpha * A * X + beta * B */

/*  where A is a tridiagonal matrix of order N, B and X are N by NRHS */
/*  matrices, and alpha and beta are real scalars, each of which may be */
/*  0., 1., or -1. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the operation applied to A. */
/*          = 'N':  No transpose, B := alpha * A * X + beta * B */
/*          = 'T':  Transpose,    B := alpha * A**T * X + beta * B */
/*          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices X and B. */

/*  ALPHA   (input) REAL */
/*          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise, */
/*          it is assumed to be 0. */

/*  DL      (input) COMPLEX array, dimension (N-1) */
/*          The (n-1) sub-diagonal elements of T. */

/*  D       (input) COMPLEX array, dimension (N) */
/*          The diagonal elements of T. */

/*  DU      (input) COMPLEX array, dimension (N-1) */
/*          The (n-1) super-diagonal elements of T. */

/*  X       (input) COMPLEX array, dimension (LDX,NRHS) */
/*          The N by NRHS matrix X. */
/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(N,1). */

/*  BETA    (input) REAL */
/*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise, */
/*          it is assumed to be 1. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the N by NRHS matrix B. */
/*          On exit, B is overwritten by the matrix expression */
/*          B := alpha * A * X + beta * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(N,1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    x_dim1 = *ldx;
//.........这里部分代码省略.........
开发者ID:0u812,项目名称:roadrunner-backup,代码行数:101,代码来源:clagtm.c


示例11: sqrt

/** CHETRF_ROOK_REC2 computes a partial factorization of a complex Hermitian indefinite matrix using the boun ded Bunch-Kaufman ("rook") diagonal pivoting method
 *
 * This routine is a minor modification of LAPACK's clahef_rook.
 * It serves as an unblocked kernel in the recursive algorithms.
 * The blocked BLAS Level 3 updates were removed and moved to the
 * recursive algorithm.
 * */
/* Subroutine */ void RELAPACK_chetrf_rook_rec2(char *uplo, int *n,
	int *nb, int *kb, complex *a, int *lda, int *ipiv,
	complex *w, int *ldw, int *info, ftnlen uplo_len)
{
    /* System generated locals */
    int a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4;
    float r__1, r__2;
    complex q__1, q__2, q__3, q__4, q__5;

    /* Builtin functions */
    double sqrt(double), r_imag(complex *);
    void r_cnjg(complex *, complex *), c_div(complex *, complex *, complex *);

    /* Local variables */
    static int j, k, p;
    static float t, r1;
    static complex d11, d21, d22;
    static int ii, jj, kk, kp, kw, jp1, jp2, kkw;
    static logical done;
    static int imax, jmax;
    static float alpha;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int cgemv_(char *, int *, int *, complex *
	    , complex *, int *, complex *, int *, complex *, complex *
	    , int *, ftnlen);
    static float sfmin;
    extern /* Subroutine */ int ccopy_(int *, complex *, int *,
	    complex *, int *);
    static int itemp;
    extern /* Subroutine */ int cswap_(int *, complex *, int *,
	    complex *, int *);
    static int kstep;
    static float stemp, absakk;
    extern /* Subroutine */ int clacgv_(int *, complex *, int *);
    extern int icamax_(int *, complex *, int *);
    extern double slamch_(char *, ftnlen);
    extern /* Subroutine */ int csscal_(int *, float *, complex *, int
	    *);
    static float colmax, rowmax;

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1;
    w -= w_offset;

    /* Function Body */
    *info = 0;
    alpha = (sqrt(17.f) + 1.f) / 8.f;
    sfmin = slamch_("S", (ftnlen)1);
    if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
	k = *n;
L10:
	kw = *nb + k - *n;
	if ((k <= *n - *nb + 1 && *nb < *n) || k < 1) {
	    goto L30;
	}
	kstep = 1;
	p = k;
	if (k > 1) {
	    i__1 = k - 1;
	    ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
		    c__1);
	}
	i__1 = k + kw * w_dim1;
	i__2 = k + k * a_dim1;
	r__1 = a[i__2].r;
	w[i__1].r = r__1, w[i__1].i = 0.f;
	if (k < *n) {
	    i__1 = *n - k;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
		     lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
		    w_dim1 + 1], &c__1, (ftnlen)12);
	    i__1 = k + kw * w_dim1;
	    i__2 = k + kw * w_dim1;
	    r__1 = w[i__2].r;
	    w[i__1].r = r__1, w[i__1].i = 0.f;
	}
	i__1 = k + kw * w_dim1;
	absakk = (r__1 = w[i__1].r, dabs(r__1));
	if (k > 1) {
	    i__1 = k - 1;
	    imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
	    i__1 = imax + kw * w_dim1;
	    colmax = (r__1 = w[i__1].r, dabs(r__1)) + (r__2 = r_imag(&w[imax
		    + kw * w_dim1]), dabs(r__2));
	} else {
	    colmax = 0.f;
	}
//.........这里部分代码省略.........
开发者ID:ChinaQuants,项目名称:OpenBLAS,代码行数:101,代码来源:chetrf_rook_rec2.c


示例12: r_imag

/* Subroutine */ int chseqr_(char *job, char *compz, integer *n, integer *ilo,
	 integer *ihi, complex *h__, integer *ldh, complex *w, complex *z__, 
	integer *ldz, complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4[2], 
	    i__5, i__6;
    real r__1, r__2, r__3, r__4;
    complex q__1;
    char ch__1[2];

    /* Builtin functions */
    double r_imag(complex *);
    void r_cnjg(complex *, complex *);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static integer maxb, ierr;
    static real unfl;
    static complex temp;
    static real ovfl, opst;
    static integer i__, j, k, l;
    static complex s[225]	/* was [15][15] */;
    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
	    integer *);
    static complex v[16];
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
	    , complex *, integer *, complex *, integer *, complex *, complex *
	    , integer *), ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    static integer itemp;
    static real rtemp;
    static integer i1, i2;
    static logical initz, wantt, wantz;
    static real rwork[1];
    extern doublereal slapy2_(real *, real *);
    static integer ii, nh;
    extern /* Subroutine */ int slabad_(real *, real *), clarfg_(integer *, 
	    complex *, complex *, integer *, complex *);
    static integer nr, ns;
    extern integer icamax_(integer *, complex *, integer *);
    static integer nv;
    extern doublereal slamch_(char *), clanhs_(char *, integer *, 
	    complex *, integer *, real *);
    extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer 
	    *), clahqr_(logical *, logical *, integer *, integer *, integer *,
	     complex *, integer *, complex *, integer *, integer *, complex *,
	     integer *, integer *), clacpy_(char *, integer *, integer *, 
	    complex *, integer *, complex *, integer *);
    static complex vv[16];
    extern /* Subroutine */ int claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int clarfx_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *, complex *), xerbla_(
	    char *, integer *);
    static real smlnum;
    static logical lquery;
    static integer itn;
    static complex tau;
    static integer its;
    static real ulp, tst1;


#define h___subscr(a_1,a_2) (a_2)*h_dim1 + a_1
#define h___ref(a_1,a_2) h__[h___subscr(a_1,a_2)]
#define s_subscr(a_1,a_2) (a_2)*15 + a_1 - 16
#define s_ref(a_1,a_2) s[s_subscr(a_1,a_2)]
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   

       Common block to return operation count.   

    Purpose   
    =======   

    CHSEQR computes the eigenvalues of a complex upper Hessenberg   
    matrix H, and, optionally, the matrices T and Z from the Schur   
    decomposition H = Z T Z**H, where T is an upper triangular matrix   
    (the Schur form), and Z is the unitary matrix of Schur vectors.   

    Optionally Z may be postmultiplied into an input unitary matrix Q,   
    so that this routine can give the Schur factorization of a matrix A   
    which has been reduced to the Hessenberg form H by the unitary   
    matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            = 'E': compute eigenvalues only;   
//.........这里部分代码省略.........
开发者ID:zangel,项目名称:uquad,代码行数:101,代码来源:chseqr.c


示例13: r_cnjg

/* Subroutine */ int chpr_(char *uplo, integer *n, real *alpha, complex *x, 
	integer *incx, complex *ap)
{
    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;
    real r__1;
    complex q__1, q__2;
    /* Builtin functions */
    void r_cnjg(complex *, complex *);
    /* Local variables */
    static integer info;
    static complex temp;
    static integer i__, j, k;
    extern logical lsame_(char *, char *);
    static integer kk, ix, jx, kx;
    extern /* Subroutine */ int xerbla_(char *, integer *);
/*  Purpose   
    =======   
    CHPR    performs the hermitian rank 1 operation   
       A := alpha*x*conjg( x' ) + A,   
    where alpha is a real scalar, x is an n element vector and A is an   
    n by n hermitian matrix, supplied in packed form.   
    Parameters   
    ==========   
    UPLO   - CHARACTER*1.   
             On entry, UPLO specifies whether the upper or lower   
             triangular part of the matrix A is supplied in the packed   
             array AP as follows:   
                UPLO = 'U' or 'u'   The upper triangular part of A is   
                                    supplied in AP.   
                UPLO = 'L' or 'l'   The lower triangular part of A is   
                                    supplied in AP.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the order of the matrix A.   
             N must be at least zero.   
             Unchanged on exit.   
    ALPHA  - REAL            .   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    X      - COMPLEX          array of dimension at least   
             ( 1 + ( n - 1 )*abs( INCX ) ).   
             Before entry, the incremented array X must contain the n   
             element vector x.   
             Unchanged on exit.   
    INCX   - INTEGER.   
             On entry, INCX specifies the increment for the elements of   
             X. INCX must not be zero.   
             Unchanged on exit.   
    AP     - COMPLEX          array of DIMENSION at least   
             ( ( n*( n + 1 ) )/2 ).   
             Before entry with  UPLO = 'U' or 'u', the array AP must   
             contain the upper triangular part of the hermitian matrix   
             packed sequentially, column by column, so that AP( 1 )   
             contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )   
             and a( 2, 2 ) respectively, and so on. On exit, the array   
             AP is overwritten by the upper triangular part of the   
             updated matrix.   
             Before entry with UPLO = 'L' or 'l', the array AP must   
             contain the lower triangular part of the hermitian matrix   
             packed sequentially, column by column, so that AP( 1 )   
             contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )   
             and a( 3, 1 ) respectively, and so on. On exit, the array   
             AP is overwritten by the lower triangular part of the   
             updated matrix.   
             Note that the imaginary parts of the diagonal elements need   
             not be set, they are assumed to be zero, and on exit they   
             are set to zero.   
    Level 2 Blas routine.   
    -- Written on 22-October-1986.   
       Jack Dongarra, Argonne National Lab.   
       Jeremy Du Croz, Nag Central Office.   
       Sven Hammarling, Nag Central Office.   
       Richard Hanson, Sandia National Labs.   
       Test the input parameters.   
       Parameter adjustments */
    --ap;
    --x;
    /* Function Body */
    info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*incx == 0) {
	info = 5;
    }
    if (info != 0) {
	xerbla_("CHPR  ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*n == 0 || *alpha == 0.f) {
	return 0;
    }
/*     Set the start point in X if the increment is not unity. */
    if (*incx <= 0) {
	kx = 1 - (*n - 1) * *incx;
    } else if (*incx != 1) {
	kx = 1;
//.........这里部分代码省略.........
开发者ID:EugeneGalipchak,项目名称:antelope_contrib,代码行数:101,代码来源:chpr.c


示例14: r_cnjg


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ r_config_get函数代码示例发布时间:2022-05-30
下一篇:
C++ r_buf_size函数代码示例发布时间:2022-05-30
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap