• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C++ qA函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中qA函数的典型用法代码示例。如果您正苦于以下问题:C++ qA函数的具体用法?C++ qA怎么用?C++ qA使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了qA函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: qA

bool b2RopeJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	b2Rot qA(aA), qB(aB);

	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 u = cB + rB - cA - rA;

	float32 length = u.Normalize();
	float32 C = length - m_maxLength;

	C = b2Clamp(C, 0.0f, b2_maxLinearCorrection);

	float32 impulse = -m_mass * C;
	b2Vec2 P = impulse * u;

	cA -= m_invMassA * P;
	aA -= m_invIA * b2Cross(rA, P);
	cB += m_invMassB * P;
	aB += m_invIB * b2Cross(rB, P);

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return length - m_maxLength < b2_linearSlop;
}
开发者ID:03050903,项目名称:Urho3D,代码行数:33,代码来源:b2RopeJoint.cpp


示例2: qA

bool cb2RopeJoint::SolvePositionConstraints(const cb2SolverData& data)
{
	ci::Vec2f cA = data.positions[m_indexA].c;
	float aA = data.positions[m_indexA].a;
	ci::Vec2f cB = data.positions[m_indexB].c;
	float aB = data.positions[m_indexB].a;

	cb2Rot qA(aA), qB(aB);

	ci::Vec2f rA = cb2Mul(qA, m_localAnchorA - m_localCenterA);
	ci::Vec2f rB = cb2Mul(qB, m_localAnchorB - m_localCenterB);
	ci::Vec2f u = cB + rB - cA - rA;
  
	float length = u.length();
  u /= length;
	float C = length - m_maxLength;

	C = cb2Clamp(C, 0.0f, cb2_maxLinearCorrection);

	float impulse = -m_mass * C;
	ci::Vec2f P = impulse * u;

	cA -= m_invMassA * P;
	aA -= m_invIA * cb2Cross(rA, P);
	cB += m_invMassB * P;
	aB += m_invIB * cb2Cross(rB, P);

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return length - m_maxLength < cb2_linearSlop;
}
开发者ID:y3i12,项目名称:CinderBox2D,代码行数:34,代码来源:cb2RopeJoint.cpp


示例3: qA

bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	b2Rot qA(aA), qB(aB);

	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 d = (cB - cA) + rB - rA;

	b2Vec2 ay = b2Mul(qA, m_localYAxisA);

	float32 sAy = b2Cross(d + rA, ay);
	float32 sBy = b2Cross(rB, ay);

	float32 C = b2Dot(d, ay);

	float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;

	float32 impulse;
	if (k != 0.0f)
	{
		impulse = - C / k;
	}
	else
	{
		impulse = 0.0f;
	}

	b2Vec2 P = impulse * ay;
	float32 LA = impulse * sAy;
	float32 LB = impulse * sBy;

	cA -= m_invMassA * P;
	aA -= m_invIA * LA;
	cB += m_invMassB * P;
	aB += m_invIB * LB;

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return b2Abs(C) <= b2_linearSlop;
}
开发者ID:AndrewStern,项目名称:PigeonBase,代码行数:48,代码来源:b2WheelJoint.cpp


示例4: qA

bool b2ElasticRopeJoint::SolvePositionConstraints(const b2SolverData& data)
{
    if (m_frequencyHz > 0.0f)
    {
        // There is no position correction for soft distance constraints.
        return true;
    }

    b2Vec2 cA = data.positions[m_indexA].c;
    float32 aA = data.positions[m_indexA].a;
    b2Vec2 cB = data.positions[m_indexB].c;
    float32 aB = data.positions[m_indexB].a;

    b2Rot qA(aA), qB(aB);

    b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
    b2Vec2 u = cB + rB - cA - rA;

    float32 length = u.Normalize();

    float32 C;
    if(length-m_length < 0) {
        C = 0;//length - m_length;
    } else {
        C = length - m_length;
    }


    C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection);

    float32 impulse = -m_mass * C;
    b2Vec2 P = impulse * u;

    cA -= m_invMassA * P;
    aA -= m_invIA * b2Cross(rA, P);
    cB += m_invMassB * P;
    aB += m_invIB * b2Cross(rB, P);

    data.positions[m_indexA].c = cA;
    data.positions[m_indexA].a = aA;
    data.positions[m_indexB].c = cB;
    data.positions[m_indexB].a = aB;

    return b2Abs(C) < b2_linearSlop;
}
开发者ID:InPieces,项目名称:b2ElasticRopeJoint,代码行数:46,代码来源:b2ElasticRopeJoint.cpp


示例5: test_quat_precision

static int test_quat_precision()
{
	int Error(0);
	
	{
		glm::f32quat q1;
		glm::lowp_f32quat qA(q1);
		glm::mediump_f32quat qB(q1);
		glm::highp_f32quat qC(q1);
		glm::f32quat q2(qA);
		glm::f32quat q3(qB);
		glm::f32quat q4(qC);
		
		Error += glm::all(glm::equal(q1, q2)) ? 0 : 1;
		Error += glm::all(glm::equal(q1, q3)) ? 0 : 1;
		Error += glm::all(glm::equal(q1, q4)) ? 0 : 1;
	}

	return Error;
}
开发者ID:AGS-Programming-Club,项目名称:AGS-Game-Project,代码行数:20,代码来源:gtc_type_precision.cpp


示例6: qA

bool DistanceJoint::SolvePositionConstraints(const SolverData& data)
{
	if (m_frequencyHz > 0.0f)
	{
		// There is no position correction for soft distance constraints.
		return true;
	}

	Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	Rot qA(aA), qB(aB);

	Vec2 rA = Mul(qA, m_localAnchorA - m_localCenterA);
	Vec2 rB = Mul(qB, m_localAnchorB - m_localCenterB);
	Vec2 u = cB + rB - cA - rA;

	float32 length = u.Normalize();
	float32 C = length - m_length;
	C = Clamp(C, -maxLinearCorrection, maxLinearCorrection);

	float32 impulse = -m_mass * C;
	Vec2 P = impulse * u;

	cA -= m_invMassA * P;
	aA -= m_invIA * Cross(rA, P);
	cB += m_invMassB * P;
	aB += m_invIB * Cross(rB, P);

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return Abs(C) < linearSlop;
}
开发者ID:ZhuangChun,项目名称:Box2D,代码行数:38,代码来源:DistanceJoint.cpp


示例7: split_cubicT

    vecN<vecN<vecN<OutputType, 2>, 4>, 2>
    split_cubicT(c_array<const vecN<InputType, 2> > pts)
    {
      FASTUIDRAWassert(pts.size() == 4);

      vecN<vecN<vecN<OutputType, 2>, 4>, 2> return_value;
      vecN<IntermediateType, 2> p0(pts[0]), p1(pts[1]), p2(pts[2]), p3(pts[3]);
      vecN<IntermediateType, 2> p01, p23, pA, pB, pC;
      const IntermediateType two(2), three(3), four(4), eight(8);

      p01 = (p0 + p1) / two;
      p23 = (p2 + p3) / two;
      pA = (p0 + two * p1 + p2) / four;
      pB = (p1 + two * p2 + p3) / four;
      pC = (p0 + three * p1 + three * p2 + p3) / eight;

      vecN<OutputType, 2> q0(pts[0]), q01(p01), qA(pA), qC(pC);
      vecN<OutputType, 2> qB(pB), q23(p23), q3(pts[3]);

      return_value[0] = vecN<vecN<OutputType, 2>, 4>(q0, q01, qA, qC);
      return_value[1] = vecN<vecN<OutputType, 2>, 4>(qC, qB, q23, q3);

      return return_value;
    }
开发者ID:01org,项目名称:fastuidraw,代码行数:24,代码来源:bezier_util.hpp


示例8: qA

bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	b2Rot qA(aA), qB(aB);

	float32 angularError = 0.0f;
	float32 positionError = 0.0f;

	bool fixedRotation = (m_invIA + m_invIB == 0.0f);

	// Solve angular limit constraint.
	if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false)
	{
		float32 angle = aB - aA - m_referenceAngle;
		float32 limitImpulse = 0.0f;

		if (m_limitState == e_equalLimits)
		{
			// Prevent large angular corrections
			float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection);
			limitImpulse = -m_motorMass * C;
			angularError = b2Abs(C);
		}
		else if (m_limitState == e_atLowerLimit)
		{
			float32 C = angle - m_lowerAngle;
			angularError = -C;

			// Prevent large angular corrections and allow some slop.
			C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f);
			limitImpulse = -m_motorMass * C;
		}
		else if (m_limitState == e_atUpperLimit)
		{
			float32 C = angle - m_upperAngle;
			angularError = C;

			// Prevent large angular corrections and allow some slop.
			C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection);
			limitImpulse = -m_motorMass * C;
		}

		aA -= m_invIA * limitImpulse;
		aB += m_invIB * limitImpulse;
	}

	// Solve point-to-point constraint.
	{
		qA.Set(aA);
		qB.Set(aB);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);

		b2Vec2 C = cB + rB - cA - rA;
		positionError = C.Length();

		float32 mA = m_invMassA, mB = m_invMassB;
		float32 iA = m_invIA, iB = m_invIB;

		b2Mat22 K;
		K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y;
		K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y;
		K.ey.x = K.ex.y;
		K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x;

		b2Vec2 impulse = -K.Solve(C);

		cA -= mA * impulse;
		aA -= iA * b2Cross(rA, impulse);

		cB += mB * impulse;
		aB += iB * b2Cross(rB, impulse);
	}

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
}
开发者ID:1103785815,项目名称:wizardwar,代码行数:85,代码来源:b2RevoluteJoint.cpp


示例9: qA

void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data)
{
    m_indexA = m_bodyA->m_islandIndex;
    m_indexB = m_bodyB->m_islandIndex;
    m_localCenterA = m_bodyA->m_sweep.localCenter;
    m_localCenterB = m_bodyB->m_sweep.localCenter;
    m_invMassA = m_bodyA->m_invMass;
    m_invMassB = m_bodyB->m_invMass;
    m_invIA = m_bodyA->m_invI;
    m_invIB = m_bodyB->m_invI;

    b2Vec2 cA = data.positions[m_indexA].c;
    float32 aA = data.positions[m_indexA].a;
    b2Vec2 vA = data.velocities[m_indexA].v;
    float32 wA = data.velocities[m_indexA].w;

    b2Vec2 cB = data.positions[m_indexB].c;
    float32 aB = data.positions[m_indexB].a;
    b2Vec2 vB = data.velocities[m_indexB].v;
    float32 wB = data.velocities[m_indexB].w;

    b2Rot qA(aA), qB(aB);

    m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);

    // Get the pulley axes.
    m_uA = cA + m_rA - m_groundAnchorA;
    m_uB = cB + m_rB - m_groundAnchorB;

    float32 lengthA = m_uA.Length();
    float32 lengthB = m_uB.Length();

    if (lengthA > 10.0f * b2_linearSlop)
    {
        m_uA *= 1.0f / lengthA;
    }
    else
    {
        m_uA.SetZero();
    }

    if (lengthB > 10.0f * b2_linearSlop)
    {
        m_uB *= 1.0f / lengthB;
    }
    else
    {
        m_uB.SetZero();
    }

    // Compute effective mass.
    float32 ruA = b2Cross(m_rA, m_uA);
    float32 ruB = b2Cross(m_rB, m_uB);

    float32 mA = m_invMassA + m_invIA * ruA * ruA;
    float32 mB = m_invMassB + m_invIB * ruB * ruB;

    m_mass = mA + m_ratio * m_ratio * mB;

    if (m_mass > 0.0f)
    {
        m_mass = 1.0f / m_mass;
    }

    if (data.step.warmStarting)
    {
        // Scale impulses to support variable time steps.
        m_impulse *= data.step.dtRatio;

        // Warm starting.
        b2Vec2 PA = -(m_impulse) * m_uA;
        b2Vec2 PB = (-m_ratio * m_impulse) * m_uB;

        vA += m_invMassA * PA;
        wA += m_invIA * b2Cross(m_rA, PA);
        vB += m_invMassB * PB;
        wB += m_invIB * b2Cross(m_rB, PB);
    }
    else
    {
        m_impulse = 0.0f;
    }

    data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
开发者ID:grefZhou,项目名称:cocos2dx-extensions-master,代码行数:89,代码来源:b2PulleyJoint.cpp


示例10: qA

bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	b2Rot qA(aA), qB(aB);

	float32 mA = m_invMassA, mB = m_invMassB;
	float32 iA = m_invIA, iB = m_invIB;

	// Compute fresh Jacobians
	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 d = cB + rB - cA - rA;

	b2Vec2 axis = b2Mul(qA, m_localXAxisA);
	float32 a1 = b2Cross(d + rA, axis);
	float32 a2 = b2Cross(rB, axis);
	b2Vec2 perp = b2Mul(qA, m_localYAxisA);

	float32 s1 = b2Cross(d + rA, perp);
	float32 s2 = b2Cross(rB, perp);

	b2Vec3 impulse;
	b2Vec2 C1;
	C1.x = b2Dot(perp, d);
	C1.y = aB - aA - m_referenceAngle;

	float32 linearError = b2Abs(C1.x);
	float32 angularError = b2Abs(C1.y);

	bool active = false;
	float32 C2 = 0.0f;
	if (m_enableLimit)
	{
		float32 translation = b2Dot(axis, d);
		if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
		{
			// Prevent large angular corrections
			C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
			linearError = b2Max(linearError, b2Abs(translation));
			active = true;
		}
		else if (translation <= m_lowerTranslation)
		{
			// Prevent large linear corrections and allow some slop.
			C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
			linearError = b2Max(linearError, m_lowerTranslation - translation);
			active = true;
		}
		else if (translation >= m_upperTranslation)
		{
			// Prevent large linear corrections and allow some slop.
			C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
			linearError = b2Max(linearError, translation - m_upperTranslation);
			active = true;
		}
	}

	if (active)
	{
		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
		float32 k12 = iA * s1 + iB * s2;
		float32 k13 = iA * s1 * a1 + iB * s2 * a2;
		float32 k22 = iA + iB;
		if (k22 == 0.0f)
		{
			// For fixed rotation
			k22 = 1.0f;
		}
		float32 k23 = iA * a1 + iB * a2;
		float32 k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2;

		b2Mat33 K;
		K.ex.Set(k11, k12, k13);
		K.ey.Set(k12, k22, k23);
		K.ez.Set(k13, k23, k33);

		b2Vec3 C;
		C.x = C1.x;
		C.y = C1.y;
		C.z = C2;

		impulse = K.Solve33(-C);
	}
	else
	{
		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
		float32 k12 = iA * s1 + iB * s2;
		float32 k22 = iA + iB;
		if (k22 == 0.0f)
		{
			k22 = 1.0f;
		}

		b2Mat22 K;
		K.ex.Set(k11, k12);
		K.ey.Set(k12, k22);
//.........这里部分代码省略.........
开发者ID:SVasilev,项目名称:TimeWaste,代码行数:101,代码来源:b2PrismaticJoint.cpp


示例11: qA

void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data)
{
    m_indexA = m_bodyA->m_islandIndex;
    m_indexB = m_bodyB->m_islandIndex;
    m_localCenterA = m_bodyA->m_sweep.localCenter;
    m_localCenterB = m_bodyB->m_sweep.localCenter;
    m_invMassA = m_bodyA->m_invMass;
    m_invMassB = m_bodyB->m_invMass;
    m_invIA = m_bodyA->m_invI;
    m_invIB = m_bodyB->m_invI;

    float32 aA = data.positions[m_indexA].a;
    b2Vec2 vA = data.velocities[m_indexA].v;
    float32 wA = data.velocities[m_indexA].w;

    float32 aB = data.positions[m_indexB].a;
    b2Vec2 vB = data.velocities[m_indexB].v;
    float32 wB = data.velocities[m_indexB].w;

    b2Rot qA(aA), qB(aB);

    m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);

    // J = [-I -r1_skew I r2_skew]
    //     [ 0       -1 0       1]
    // r_skew = [-ry; rx]

    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
    //     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
    //     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]

    float32 mA = m_invMassA, mB = m_invMassB;
    float32 iA = m_invIA, iB = m_invIB;

    b2Mat33 K;
    K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
    K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
    K.ez.x = -m_rA.y * iA - m_rB.y * iB;
    K.ex.y = K.ey.x;
    K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
    K.ez.y = m_rA.x * iA + m_rB.x * iB;
    K.ex.z = K.ez.x;
    K.ey.z = K.ez.y;
    K.ez.z = iA + iB;

    if (m_frequencyHz > 0.0f)
    {
        K.GetInverse22(&m_mass);

        float32 invM = iA + iB;
        float32 m = invM > 0.0f ? 1.0f / invM : 0.0f;

        float32 C = aB - aA - m_referenceAngle;

        // Frequency
        float32 omega = 2.0f * b2_pi * m_frequencyHz;

        // Damping coefficient
        float32 d = 2.0f * m * m_dampingRatio * omega;

        // Spring stiffness
        float32 k = m * omega * omega;

        // magic formulas
        float32 h = data.step.dt;
        m_gamma = h * (d + h * k);
        m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
        m_bias = C * h * k * m_gamma;

        invM += m_gamma;
        m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
    }
    else
    {
        K.GetSymInverse33(&m_mass);
        m_gamma = 0.0f;
        m_bias = 0.0f;
    }

    if (data.step.warmStarting)
    {
        // Scale impulses to support a variable time step.
        m_impulse *= data.step.dtRatio;

        b2Vec2 P(m_impulse.x, m_impulse.y);

        vA -= mA * P;
        wA -= iA * (b2Cross(m_rA, P) + m_impulse.z);

        vB += mB * P;
        wB += iB * (b2Cross(m_rB, P) + m_impulse.z);
    }
    else
    {
        m_impulse.SetZero();
    }

    data.velocities[m_indexA].v = vA;
//.........这里部分代码省略.........
开发者ID:DeniLi,项目名称:Missile-Demo,代码行数:101,代码来源:b2WeldJoint.cpp


示例12: qA

bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float aB = data.positions[m_indexB].a;
	b2Vec2 cC = data.positions[m_indexC].c;
	float aC = data.positions[m_indexC].a;
	b2Vec2 cD = data.positions[m_indexD].c;
	float aD = data.positions[m_indexD].a;

	b2Rot qA(aA), qB(aB), qC(aC), qD(aD);

	float linearError = 0.0f;

	float coordinateA, coordinateB;

	b2Vec2 JvAC, JvBD;
	float JwA, JwB, JwC, JwD;
	float mass = 0.0f;

	if (m_typeA == e_revoluteJoint)
	{
		JvAC.SetZero();
		JwA = 1.0f;
		JwC = 1.0f;
		mass += m_iA + m_iC;

		coordinateA = aA - aC - m_referenceAngleA;
	}
	else
	{
		b2Vec2 u = b2Mul(qC, m_localAxisC);
		b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
		JvAC = u;
		JwC = b2Cross(rC, u);
		JwA = b2Cross(rA, u);
		mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;

		b2Vec2 pC = m_localAnchorC - m_lcC;
		b2Vec2 pA = b2MulT(qC, rA + (cA - cC));
		coordinateA = b2Dot(pA - pC, m_localAxisC);
	}

	if (m_typeB == e_revoluteJoint)
	{
		JvBD.SetZero();
		JwB = m_ratio;
		JwD = m_ratio;
		mass += m_ratio * m_ratio * (m_iB + m_iD);

		coordinateB = aB - aD - m_referenceAngleB;
	}
	else
	{
		b2Vec2 u = b2Mul(qD, m_localAxisD);
		b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
		JvBD = m_ratio * u;
		JwD = m_ratio * b2Cross(rD, u);
		JwB = m_ratio * b2Cross(rB, u);
		mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;

		b2Vec2 pD = m_localAnchorD - m_lcD;
		b2Vec2 pB = b2MulT(qD, rB + (cB - cD));
		coordinateB = b2Dot(pB - pD, m_localAxisD);
	}

	float C = (coordinateA + m_ratio * coordinateB) - m_constant;

	float impulse = 0.0f;
	if (mass > 0.0f)
	{
		impulse = -C / mass;
	}

	cA += m_mA * impulse * JvAC;
	aA += m_iA * impulse * JwA;
	cB += m_mB * impulse * JvBD;
	aB += m_iB * impulse * JwB;
	cC -= m_mC * impulse * JvAC;
	aC -= m_iC * impulse * JwC;
	cD -= m_mD * impulse * JvBD;
	aD -= m_iD * impulse * JwD;

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;
	data.positions[m_indexC].c = cC;
	data.positions[m_indexC].a = aC;
	data.positions[m_indexD].c = cD;
	data.positions[m_indexD].a = aD;

	// TODO_ERIN not implemented
	return linearError < b2_linearSlop;
}
开发者ID:Epidilius,项目名称:PhysicsHackAndSlash,代码行数:98,代码来源:b2GearJoint.cpp


示例13: qA

void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data)
{
	m_indexA = m_bodyA->m_islandIndex;
	m_indexB = m_bodyB->m_islandIndex;
	m_localCenterA = m_bodyA->m_sweep.localCenter;
	m_localCenterB = m_bodyB->m_sweep.localCenter;
	m_invMassA = m_bodyA->m_invMass;
	m_invMassB = m_bodyB->m_invMass;
	m_invIA = m_bodyA->m_invI;
	m_invIB = m_bodyB->m_invI;

	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;

	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;

	b2Rot qA(aA), qB(aB);

	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	m_u = cB + m_rB - cA - m_rA;

	// Handle singularity.
	float32 length = m_u.Length();
	if (length > b2_linearSlop)
	{
		m_u *= 1.0f / length;
	}
	else
	{
		m_u.Set(0.0f, 0.0f);
	}

	float32 crAu = b2Cross(m_rA, m_u);
	float32 crBu = b2Cross(m_rB, m_u);
	float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu;

	// Compute the effective mass matrix.
	m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;

	if (m_frequencyHz > 0.0f)
	{
		float32 C = length - m_length;

		// Frequency
		float32 omega = 2.0f * b2_pi * m_frequencyHz;

		// Damping coefficient
		float32 d = 2.0f * m_mass * m_dampingRatio * omega;

		// Spring stiffness
		float32 k = m_mass * omega * omega;

		// magic formulas
		float32 h = data.step.dt;
		m_gamma = h * (d + h * k);
		m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
		m_bias = C * h * k * m_gamma;

		invMass += m_gamma;
		m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
	}
	else
	{
		m_gamma = 0.0f;
		m_bias = 0.0f;
	}

	if (data.step.warmStarting)
	{
		// Scale the impulse to support a variable time step.
		m_impulse *= data.step.dtRatio;

		b2Vec2 P = m_impulse * m_u;
		vA -= m_invMassA * P;
		wA -= m_invIA * b2Cross(m_rA, P);
		vB += m_invMassB * P;
		wB += m_invIB * b2Cross(m_rB, P);
	}
	else
	{
		m_impulse = 0.0f;
	}

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
}
开发者ID:0302zq,项目名称:libgdx,代码行数:94,代码来源:b2DistanceJoint.cpp


示例14: qA

void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) {
	m_indexA = m_bodyA->m_islandIndex;
	m_indexB = m_bodyB->m_islandIndex;
	m_localCenterA = m_bodyA->m_sweep.localCenter;
	m_localCenterB = m_bodyB->m_sweep.localCenter;
	m_invMassA = m_bodyA->m_invMass;
	m_invMassB = m_bodyB->m_invMass;
	m_invIA = m_bodyA->m_invI;
	m_invIB = m_bodyB->m_invI;

	float32 mA = m_invMassA, mB = m_invMassB;
	float32 iA = m_invIA, iB = m_invIB;

	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;

	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;

	b2Rot qA(aA), qB(aB);

	// Compute the effective masses.
	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 d = cB + rB - cA - rA;

	// Point to line constraint
	{
		m_ay = b2Mul(qA, m_localYAxisA);
		m_sAy = b2Cross(d + rA, m_ay);
		m_sBy = b2Cross(rB, m_ay);

		m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;

		if (m_mass > 0.0f) {
			m_mass = 1.0f / m_mass;
		}
	}

	// Spring constraint
	m_springMass = 0.0f;
	m_bias = 0.0f;
	m_gamma = 0.0f;
	if (m_frequencyHz > 0.0f) {
		m_ax = b2Mul(qA, m_localXAxisA);
		m_sAx = b2Cross(d + rA, m_ax);
		m_sBx = b2Cross(rB, m_ax);

		float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;

		if (invMass > 0.0f) {
			m_springMass = 1.0f / invMass;

			float32 C = b2Dot(d, m_ax);

			// Frequency
			float32 omega = 2.0f * b2_pi * m_frequencyHz;

			// Damping coefficient
			float32 d = 2.0f * m_springMass * m_dampingRatio * omega;

			// Spring stiffness
			float32 k = m_springMass * omega * omega;

			// magic formulas
			float32 h = data.step.dt;
			m_gamma = h * (d + h * k);
			if (m_gamma > 0.0f) {
				m_gamma = 1.0f / m_gamma;
			}

			m_bias = C * h * k * m_gamma;

			m_springMass = invMass + m_gamma;
			if (m_springMass > 0.0f) {
				m_springMass = 1.0f / m_springMass;
			}
		}
	} else {
		m_springImpulse = 0.0f;
	}

	// Rotational motor
	if (m_enableMotor) {
		m_motorMass = iA + iB;
		if (m_motorMass > 0.0f) {
			m_motorMass = 1.0f / m_motorMass;
		}
	} else {
		m_motorMass = 0.0f;
		m_motorImpulse = 0.0f;
	}

	if (data.step.warmStarting) {
		// Account for variable time step.
		m_impulse *= data.step.dtRatio;
//.........这里部分代码省略.........
开发者ID:Xero-Hige,项目名称:taller,代码行数:101,代码来源:b2WheelJoint.cpp


示例15: qA

void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data)
{
    m_indexA = m_bodyA->m_islandIndex;
    m_indexB = m_bodyB->m_islandIndex;
    m_localCenterA = m_bodyA->m_sweep.localCenter;
    m_localCenterB = m_bodyB->m_sweep.localCenter;
    m_invMassA = m_bodyA->m_invMass;
    m_invMassB = m_bodyB->m_invMass;
    m_invIA = m_bodyA->m_invI;
    m_invIB = m_bodyB->m_invI;

    float32 aA = data.positions[m_indexA].a;
    b2Vec2 vA = data.velocities[m_indexA].v;
    float32 wA = data.velocities[m_indexA].w;

    float32 aB = data.positions[m_indexB].a;
    b2Vec2 vB = data.velocities[m_indexB].v;
    float32 wB = data.velocities[m_indexB].w;

    b2Rot qA(aA), qB(aB);

    // Compute the effective mass matrix.
    m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
    m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);

    // J = [-I -r1_skew I r2_skew]
    //     [ 0       -1 0       1]
    // r_skew = [-ry; rx]

    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
    //     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
    //     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]

    float32 mA = m_invMassA, mB = m_invMassB;
    float32 iA = m_invIA, iB = m_invIB;

    b2Mat22 K;
    K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
    K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
    K.ey.x = K.ex.y;
    K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;

    m_linearMass = K.GetInverse();

    m_angularMass = iA + iB;
    if (m_angularMass > 0.0f)
    {
        m_angularMass = 1.0f / m_angularMass;
    }

    if (data.step.warmStarting)
    {
        // Scale impulses to support a variable time step.
        m_linearImpulse *= data.step.dtRatio;
        m_angularImpulse *= data.step.dtRatio;

        b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
        vA -= mA * P;
        wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
        vB += mB * P;
        wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
    }
    else
    {
        m_linearImpulse.SetZero();
        m_angularImpulse = 0.0f;
    }

    data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
开发者ID:TukekeSoft,项目名称:jacos2d-x,代码行数:74,代码来源:b2FrictionJoint.cpp



注:本文中的qA函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ qAbs函数代码示例发布时间:2022-05-30
下一篇:
C++ q2函数代码示例发布时间:2022-05-30
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap