• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C++ d_imag函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中d_imag函数的典型用法代码示例。如果您正苦于以下问题:C++ d_imag函数的具体用法?C++ d_imag怎么用?C++ d_imag使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了d_imag函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: ctest_

   Subroutine */ int ctest_(integer *len, doublecomplex *ccomp, doublecomplex
                            *ctrue, doublecomplex *csize, doublereal *sfac)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    static integer i__;
    static doublereal scomp[20], ssize[20], strue[20];
    extern /* Subroutine */ int stest_(integer *, doublereal *, doublereal *,
                                       doublereal *, doublereal *);

    /*     **************************** CTEST *****************************

           C.L. LAWSON, JPL, 1978 DEC 6

           Parameter adjustments */
    --csize;
    --ctrue;
    --ccomp;

    /* Function Body */
    i__1 = *len;
    for (i__ = 1; i__ <= i__1; ++i__) {
        i__2 = i__;
        scomp[(i__ << 1) - 2] = ccomp[i__2].r;
        scomp[(i__ << 1) - 1] = d_imag(&ccomp[i__]);
        i__2 = i__;
        strue[(i__ << 1) - 2] = ctrue[i__2].r;
        strue[(i__ << 1) - 1] = d_imag(&ctrue[i__]);
        i__2 = i__;
        ssize[(i__ << 1) - 2] = csize[i__2].r;
        ssize[(i__ << 1) - 1] = d_imag(&csize[i__]);
        /* L20: */
    }

    i__1 = *len << 1;
    stest_(&i__1, scomp, strue, ssize, sfac);
    return 0;
} /* ctest_
开发者ID:BackupTheBerlios,项目名称:openvsipl,代码行数:43,代码来源:zblat1.c


示例2: dcabs1_

double dcabs1_(doublecomplex *z__)
{
    /* System generated locals */
    double ret_val, d__1, d__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. */
/*  Purpose */
/*  ======= */

/*  DCABS1 computes absolute value of a double complex number */

/*     .. Intrinsic Functions .. */

    ret_val = (d__1 = z__->r, ABS(d__1)) + (d__2 = d_imag(z__), ABS(d__2));
    return ret_val;
} /* dcabs1_ */
开发者ID:GuillaumeFuchs,项目名称:Ensimag,代码行数:21,代码来源:dcabs1.c


示例3: B

/* Subroutine */ int zgeequ_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, 
	doublereal *colcnd, doublereal *amax, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZGEEQU computes row and column scalings intended to equilibrate an   
    M-by-N matrix A and reduce its condition number.  R returns the row   
    scale factors and C the column scale factors, chosen to try to make   
    the largest element in each row and column of the matrix B with   
    elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.   

    R(i) and C(j) are restricted to be between SMLNUM = smallest safe   
    number and BIGNUM = largest safe number.  Use of these scaling   
    factors is not guaranteed to reduce the condition number of A but   
    works well in practice.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input) COMPLEX*16 array, dimension (LDA,N)   
            The M-by-N matrix whose equilibration factors are   
            to be computed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    R       (output) DOUBLE PRECISION array, dimension (M)   
            If INFO = 0 or INFO > M, R contains the row scale factors   
            for A.   

    C       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0,  C contains the column scale factors for A.   

    ROWCND  (output) DOUBLE PRECISION   
            If INFO = 0 or INFO > M, ROWCND contains the ratio of the   
            smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and   
            AMAX is neither too large nor too small, it is not worth   
            scaling by R.   

    COLCND  (output) DOUBLE PRECISION   
            If INFO = 0, COLCND contains the ratio of the smallest   
            C(i) to the largest C(i).  If COLCND >= 0.1, it is not   
            worth scaling by C.   

    AMAX    (output) DOUBLE PRECISION   
            Absolute value of largest matrix element.  If AMAX is very   
            close to overflow or very close to underflow, the matrix   
            should be scaled.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i,  and i is   
                  <= M:  the i-th row of A is exactly zero   
                  >  M:  the (i-M)-th column of A is exactly zero   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1, d__2, d__3, d__4;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer i__, j;
    static doublereal rcmin, rcmax;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal bignum, smlnum;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]

    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --r__;
    --c__;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
//.........这里部分代码省略.........
开发者ID:EugeneGalipchak,项目名称:antelope_contrib,代码行数:101,代码来源:zgeequ.c


示例4: lsame_


//.........这里部分代码省略.........
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

	count = 1;
	lstres = 3.;
L20:

/*        Loop until stopping criterion is satisfied. */

/*        Compute residual R = B - A * X */

	zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	z__1.r = -1., z__1.i = -0.;
	zhemv_(uplo, n, &z__1, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, &
		c_b1, &work[1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */

/*        where abs(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
		    i__ + j * b_dim1]), abs(d__2));
	}

/*        Compute abs(A)*abs(X) + abs(B). */

	if (upper) {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.;
		i__3 = k + j * x_dim1;
		xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
			 x_dim1]), abs(d__2));
		i__3 = k - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    i__4 = i__ + k * a_dim1;
		    rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = 
			    d_imag(&a[i__ + k * a_dim1]), abs(d__2))) * xk;
		    i__4 = i__ + k * a_dim1;
		    i__5 = i__ + j * x_dim1;
		    s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[
			    i__ + k * a_dim1]), abs(d__2))) * ((d__3 = x[i__5]
			    .r, abs(d__3)) + (d__4 = d_imag(&x[i__ + j * 
			    x_dim1]), abs(d__4)));
		}
		i__3 = k + k * a_dim1;
		rwork[k] = rwork[k] + (d__1 = a[i__3].r, abs(d__1)) * xk + s;
	    }
	} else {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.;
		i__3 = k + j * x_dim1;
开发者ID:juanjosegarciaripoll,项目名称:cblapack,代码行数:67,代码来源:zporfs.c


示例5: zlarfgp_

/* Subroutine */
int zlarfgp_(integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *tau)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *), z_abs( doublecomplex *);
    /* Local variables */
    integer j;
    doublecomplex savealpha;
    integer knt;
    doublereal beta, alphi, alphr;
    extern /* Subroutine */
    int zscal_(integer *, doublecomplex *, doublecomplex *, integer *);
    doublereal xnorm;
    extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal *, doublereal *, doublereal *), dznrm2_(integer *, doublecomplex * , integer *), dlamch_(char *);
    extern /* Subroutine */
    int zdscal_(integer *, doublereal *, doublecomplex *, integer *);
    doublereal bignum;
    extern /* Double Complex */
    VOID zladiv_(doublecomplex *, doublecomplex *, doublecomplex *);
    doublereal smlnum;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --x;
    /* Function Body */
    if (*n <= 0)
    {
        tau->r = 0., tau->i = 0.;
        return 0;
    }
    i__1 = *n - 1;
    xnorm = dznrm2_(&i__1, &x[1], incx);
    alphr = alpha->r;
    alphi = d_imag(alpha);
    if (xnorm == 0.)
    {
        /* H = [1-alpha/abs(alpha) 0;
        0 I], sign chosen so ALPHA >= 0. */
        if (alphi == 0.)
        {
            if (alphr >= 0.)
            {
                /* When TAU.eq.ZERO, the vector is special-cased to be */
                /* all zeros in the application routines. We do not need */
                /* to clear it. */
                tau->r = 0., tau->i = 0.;
            }
            else
            {
                /* However, the application routines rely on explicit */
                /* zero checks when TAU.ne.ZERO, and we must clear X. */
                tau->r = 2., tau->i = 0.;
                i__1 = *n - 1;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = (j - 1) * *incx + 1;
                    x[i__2].r = 0.;
                    x[i__2].i = 0.; // , expr subst
                }
                z__1.r = -alpha->r;
                z__1.i = -alpha->i; // , expr subst
                alpha->r = z__1.r, alpha->i = z__1.i;
            }
        }
        else
        {
            /* Only "reflecting" the diagonal entry to be real and non-negative. */
            xnorm = dlapy2_(&alphr, &alphi);
            d__1 = 1. - alphr / xnorm;
            d__2 = -alphi / xnorm;
            z__1.r = d__1;
            z__1.i = d__2; // , expr subst
            tau->r = z__1.r, tau->i = z__1.i;
            i__1 = *n - 1;
            for (j = 1;
                    j <= i__1;
//.........这里部分代码省略.........
开发者ID:fmarrabal,项目名称:libflame,代码行数:101,代码来源:zlarfgp.c


示例6: complex

/* Subroutine */ int zlarfg_(integer *n, doublecomplex *alpha, doublecomplex *
	x, integer *incx, doublecomplex *tau)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZLARFG generates a complex elementary reflector H of order n, such   
    that   

          H' * ( alpha ) = ( beta ),   H' * H = I.   
               (   x   )   (   0  )   

    where alpha and beta are scalars, with beta real, and x is an   
    (n-1)-element complex vector. H is represented in the form   

          H = I - tau * ( 1 ) * ( 1 v' ) ,   
                        ( v )   

    where tau is a complex scalar and v is a complex (n-1)-element   
    vector. Note that H is not hermitian.   

    If the elements of x are all zero and alpha is real, then tau = 0   
    and H is taken to be the unit matrix.   

    Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the elementary reflector.   

    ALPHA   (input/output) COMPLEX*16   
            On entry, the value alpha.   
            On exit, it is overwritten with the value beta.   

    X       (input/output) COMPLEX*16 array, dimension   
                           (1+(N-2)*abs(INCX))   
            On entry, the vector x.   
            On exit, it is overwritten with the vector v.   

    INCX    (input) INTEGER   
            The increment between elements of X. INCX > 0.   

    TAU     (output) COMPLEX*16   
            The value tau.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b5 = {1.,0.};
    
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double d_imag(doublecomplex *), d_sign(doublereal *, doublereal *);
    /* Local variables */
    static doublereal beta;
    static integer j;
    static doublereal alphi, alphr;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *, 
	    doublecomplex *, integer *);
    static doublereal xnorm;
    extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *), 
	    dznrm2_(integer *, doublecomplex *, integer *), dlamch_(char *);
    static doublereal safmin;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *);
    static doublereal rsafmn;
    extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
	     doublecomplex *);
    static integer knt;


    --x;

    /* Function Body */
    if (*n <= 0) {
	tau->r = 0., tau->i = 0.;
	return 0;
    }

    i__1 = *n - 1;
    xnorm = dznrm2_(&i__1, &x[1], incx);
    alphr = alpha->r;
    alphi = d_imag(alpha);

    if (xnorm == 0. && alphi == 0.) {

/*        H  =  I */
//.........这里部分代码省略.........
开发者ID:MichaelH13,项目名称:sdkpub,代码行数:101,代码来源:zlarfg.c


示例7: s_rsle

/* Subroutine */ int zchkbk_(integer *nin, integer *nout)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,\002.. test output of ZGEBAK .. \002)";
    static char fmt_9998[] = "(1x,\002value of largest test error           "
	    "  = \002,d12.3)";
    static char fmt_9997[] = "(1x,\002example number where info is not zero "
	    "  = \002,i4)";
    static char fmt_9996[] = "(1x,\002example number having largest error   "
	    "  = \002,i4)";
    static char fmt_9995[] = "(1x,\002number of examples where info is not 0"
	    "  = \002,i4)";
    static char fmt_9994[] = "(1x,\002total number of examples tested       "
	    "  = \002,i4)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    integer s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);
    double d_imag(doublecomplex *);
    integer s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen);

    /* Local variables */
    static integer info, lmax[2];
    static doublereal rmax, vmax;
    static doublecomplex e[400]	/* was [20][20] */;
    static integer i__, j, n;
    static doublereal scale[20], x;
    static integer ninfo;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublecomplex *, integer *, 
	    integer *);
    static doublereal safmin;
    static integer ihi;
    static doublecomplex ein[400]	/* was [20][20] */;
    static integer ilo;
    static doublereal eps;
    static integer knt;

    /* Fortran I/O blocks */
    static cilist io___7 = { 0, 0, 0, 0, 0 };
    static cilist io___11 = { 0, 0, 0, 0, 0 };
    static cilist io___14 = { 0, 0, 0, 0, 0 };
    static cilist io___17 = { 0, 0, 0, 0, 0 };
    static cilist io___22 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___23 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___24 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___25 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9994, 0 };



#define e_subscr(a_1,a_2) (a_2)*20 + a_1 - 21
#define e_ref(a_1,a_2) e[e_subscr(a_1,a_2)]
#define ein_subscr(a_1,a_2) (a_2)*20 + a_1 - 21
#define ein_ref(a_1,a_2) ein[ein_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZCHKBK tests ZGEBAK, a routine for backward transformation of   
    the computed right or left eigenvectors if the orginal matrix   
    was preprocessed by balance subroutine ZGEBAL.   

    Arguments   
    =========   

    NIN     (input) INTEGER   
            The logical unit number for input.  NIN > 0.   

    NOUT    (input) INTEGER   
            The logical unit number for output.  NOUT > 0.   

   ====================================================================== */


    lmax[0] = 0;
    lmax[1] = 0;
    ninfo = 0;
    knt = 0;
    rmax = 0.;
    eps = dlamch_("E");
    safmin = dlamch_("S");

L10:

    io___7.ciunit = *nin;
//.........这里部分代码省略.........
开发者ID:zangel,项目名称:uquad,代码行数:101,代码来源:zchkbk.c


示例8: d_imag

/* Subroutine */ int zsyequb_(char *uplo, integer *n, doublecomplex *a, 
	integer *lda, doublereal *s, doublereal *scond, doublereal *amax, 
	doublecomplex *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2, z__3, z__4;

    /* Builtin functions */
    double d_imag(doublecomplex *), sqrt(doublereal), log(doublereal), pow_di(
	    doublereal *, integer *);

    /* Local variables */
    doublereal d__;
    integer i__, j;
    doublereal t, u, c0, c1, c2, si;
    logical up;
    doublereal avg, std, tol, base;
    integer iter;
    doublereal smin, smax, scale;
    extern logical lsame_(char *, char *);
    doublereal sumsq;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum, smlnum;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *);


/*     -- LAPACK routine (version 3.2)                                 -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- November 2008                                                -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZSYEQUB computes row and column scalings intended to equilibrate a */
/*  symmetric matrix A and reduce its condition number */
/*  (with respect to the two-norm).  S contains the scale factors, */
/*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
/*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This */
/*  choice of S puts the condition number of B within a factor N of the */
/*  smallest possible condition number over all possible diagonal */
/*  scalings. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The N-by-N symmetric matrix whose scaling */
/*          factors are to be computed.  Only the diagonal elements of A */
/*          are referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  S       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, S contains the scale factors for A. */

/*  SCOND   (output) DOUBLE PRECISION */
/*          If INFO = 0, S contains the ratio of the smallest S(i) to */
/*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
/*          large nor too small, it is not worth scaling by S. */

/*  AMAX    (output) DOUBLE PRECISION */
/*          Absolute value of largest matrix element.  If AMAX is very */
/*          close to overflow or very close to underflow, the matrix */
/*          should be scaled. */
/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */

/*  Further Details */
/*  ======= ======= */

/*  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", */
/*  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. */
/*  DOI 10.1023/B:NUMA.0000016606.32820.69 */
/*  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
//.........这里部分代码省略.........
开发者ID:3deggi,项目名称:levmar-ndk,代码行数:101,代码来源:zsyequb.c


示例9: zla_hercond_x__


//.........这里部分代码省略.........

    /* Function Body */
    ret_val = 0.;

    *info = 0;
    if (*n < 0) {
	*info = -2;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZLA_HERCOND_X", &i__1);
	return ret_val;
    }
    up = FALSE_;
    if (lsame_(uplo, "U")) {
	up = TRUE_;
    }

/*     Compute norm of op(A)*op2(C). */

    anorm = 0.;
    if (up) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tmp = 0.;
	    i__2 = i__;
	    for (j = 1; j <= i__2; ++j) {
		i__3 = j + i__ * a_dim1;
		i__4 = j;
		z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i, 
			z__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4]
			.r;
		z__1.r = z__2.r, z__1.i = z__2.i;
		tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), 
			abs(d__2));
	    }
	    i__2 = *n;
	    for (j = i__ + 1; j <= i__2; ++j) {
		i__3 = i__ + j * a_dim1;
		i__4 = j;
		z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i, 
			z__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4]
			.r;
		z__1.r = z__2.r, z__1.i = z__2.i;
		tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), 
			abs(d__2));
	    }
	    rwork[i__] = tmp;
	    anorm = max(anorm,tmp);
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    tmp = 0.;
	    i__2 = i__;
	    for (j = 1; j <= i__2; ++j) {
		i__3 = i__ + j * a_dim1;
		i__4 = j;
		z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i, 
			z__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4]
			.r;
		z__1.r = z__2.r, z__1.i = z__2.i;
		tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), 
			abs(d__2));
	    }
	    i__2 = *n;
开发者ID:juanjosegarciaripoll,项目名称:cblapack,代码行数:67,代码来源:zla_hercond_x.c


示例10: zgtsv_

/* Subroutine */
int zgtsv_(integer *n, integer *nrhs, doublecomplex *dl, doublecomplex *d__, doublecomplex *du, doublecomplex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2, z__3, z__4, z__5;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
    /* Local variables */
    integer j, k;
    doublecomplex temp, mult;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    /* -- LAPACK driver routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function definitions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    /* Function Body */
    *info = 0;
    if (*n < 0)
    {
        *info = -1;
    }
    else if (*nrhs < 0)
    {
        *info = -2;
    }
    else if (*ldb < max(1,*n))
    {
        *info = -7;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZGTSV ", &i__1);
        return 0;
    }
    if (*n == 0)
    {
        return 0;
    }
    i__1 = *n - 1;
    for (k = 1;
            k <= i__1;
            ++k)
    {
        i__2 = k;
        if (dl[i__2].r == 0. && dl[i__2].i == 0.)
        {
            /* Subdiagonal is zero, no elimination is required. */
            i__2 = k;
            if (d__[i__2].r == 0. && d__[i__2].i == 0.)
            {
                /* Diagonal is zero: set INFO = K and return;
                a unique */
                /* solution can not be found. */
                *info = k;
                return 0;
            }
        }
        else /* if(complicated condition) */
        {
            i__2 = k;
            i__3 = k;
            if ((d__1 = d__[i__2].r, f2c_abs(d__1)) + (d__2 = d_imag(&d__[k]), f2c_abs(d__2)) >= (d__3 = dl[i__3].r, f2c_abs(d__3)) + (d__4 = d_imag(&dl[k]), f2c_abs(d__4)))
            {
                /* No row interchange required */
                z_div(&z__1, &dl[k], &d__[k]);
                mult.r = z__1.r;
                mult.i = z__1.i; // , expr subst
                i__2 = k + 1;
                i__3 = k + 1;
                i__4 = k;
//.........这里部分代码省略.........
开发者ID:flame,项目名称:libflame,代码行数:101,代码来源:zgtsv.c


示例11: d_imag

/* Subroutine */ int zgbrfs_(char *trans, integer *n, integer *kl, integer *
	ku, integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *
	afb, integer *ldafb, integer *ipiv, doublecomplex *b, integer *ldb, 
	doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    integer i__, j, k;
    doublereal s;
    integer kk;
    doublereal xk;
    integer nz;
    doublereal eps;
    integer kase;
    doublereal safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */ int zgbmv_(char *, integer *, integer *, integer *
, integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer count;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zlacn2_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *, integer *);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical notran;
    char transn[1], transt[1];
    doublereal lstres;
    extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer 
	    *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGBRFS improves the computed solution to a system of linear */
/*  equations when the coefficient matrix is banded, and provides */
/*  error bounds and backward error estimates for the solution. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B     (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The original band matrix A, stored in rows 1 to KL+KU+1. */
/*          The j-th column of A is stored in the j-th column of the */
/*          array AB as follows: */
/*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KL+KU+1. */

/*  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N) */
/*          Details of the LU factorization of the band matrix A, as */
/*          computed by ZGBTRF.  U is stored as an upper triangular band */
/*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
//.........这里部分代码省略.........
开发者ID:0u812,项目名称:roadrunner-backup,代码行数:101,代码来源:zgbrfs.c


示例12: z_abs

/* Subroutine */ int zlacn2_(integer *n, doublecomplex *v, doublecomplex *x, 
	doublereal *est, integer *kase, integer *isave)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double z_abs(doublecomplex *), d_imag(doublecomplex *);

    /* Local variables */
    integer i__;
    doublereal temp, absxi;
    integer jlast;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern integer izmax1_(integer *, doublecomplex *, integer *);
    extern doublereal dzsum1_(integer *, doublecomplex *, integer *), dlamch_(
	    char *);
    doublereal safmin, altsgn, estold;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLACN2 estimates the 1-norm of a square, complex matrix A. */
/*  Reverse communication is used for evaluating matrix-vector products. */

/*  Arguments */
/*  ========= */

/*  N      (input) INTEGER */
/*         The order of the matrix.  N >= 1. */

/*  V      (workspace) COMPLEX*16 array, dimension (N) */
/*         On the final return, V = A*W,  where  EST = norm(V)/norm(W) */
/*         (W is not returned). */

/*  X      (input/output) COMPLEX*16 array, dimension (N) */
/*         On an intermediate return, X should be overwritten by */
/*               A * X,   if KASE=1, */
/*               A' * X,  if KASE=2, */
/*         where A' is the conjugate transpose of A, and ZLACN2 must be */
/*         re-called with all the other parameters unchanged. */

/*  EST    (input/output) DOUBLE PRECISION */
/*         On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be */
/*         unchanged from the previous call to ZLACN2. */
/*         On exit, EST is an estimate (a lower bound) for norm(A). */

/*  KASE   (input/output) INTEGER */
/*         On the initial call to ZLACN2, KASE should be 0. */
/*         On an intermediate return, KASE will be 1 or 2, indicating */
/*         whether X should be overwritten by A * X  or A' * X. */
/*         On the final return from ZLACN2, KASE will again be 0. */

/*  ISAVE  (input/output) INTEGER array, dimension (3) */
/*         ISAVE is used to save variables between calls to ZLACN2 */

/*  Further Details */
/*  ======= ======= */

/*  Contributed by Nick Higham, University of Manchester. */
/*  Originally named CONEST, dated March 16, 1988. */

/*  Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of */
/*  a real or complex matrix, with applications to condition estimation", */
/*  ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. */

/*  Last modified:  April, 1999 */

/*  This is a thread safe version of ZLACON, which uses the array ISAVE */
/*  in place of a SAVE statement, as follows: */

/*     ZLACON     ZLACN2 */
/*      JUMP     ISAVE(1) */
/*      J        ISAVE(2) */
/*      ITER     ISAVE(3) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
//.........这里部分代码省略.........
开发者ID:0u812,项目名称:roadrunner-backup,代码行数:101,代码来源:zlacn2.c


示例13: norm

/* Subroutine */ int ztbcon_(char *norm, char *uplo, char *diag, integer *n, 
	integer *kd, doublecomplex *ab, integer *ldab, doublereal *rcond, 
	doublecomplex *work, doublereal *rwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZTBCON estimates the reciprocal of the condition number of a   
    triangular band matrix A, in either the 1-norm or the infinity-norm.   

    The norm of A is computed and an estimate is obtained for   
    norm(inv(A)), then the reciprocal of the condition number is   
    computed as   
       RCOND = 1 / ( norm(A) * norm(inv(A)) ).   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies whether the 1-norm condition number or the   
            infinity-norm condition number is required:   
            = '1' or 'O':  1-norm;   
            = 'I':         Infinity-norm.   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals or subdiagonals of the   
            triangular band matrix A.  KD >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The upper or lower triangular band matrix A, stored in the   
            first kd+1 rows of the array. The j-th column of A is stored   
            in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   
            If DIAG = 'U', the diagonal elements of A are not referenced   
            and are assumed to be 1.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    RCOND   (output) DOUBLE PRECISION   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(norm(A) * norm(inv(A))).   

    WORK    (workspace) COMPLEX*16 array, dimension (2*N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    doublereal d__1, d__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer kase, kase1;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    static logical upper;
    static doublereal xnorm;
    extern doublereal dlamch_(char *);
    static integer ix;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacon_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *);
    static doublereal ainvnm;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    extern doublereal zlantb_(char *, char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *);
    static logical onenrm;
//.........这里部分代码省略.........
开发者ID:EugeneGalipchak,项目名称:antelope_contrib,代码行数:101,代码来源:ztbcon.c


示例14: d_imag

/* Subroutine */ int zptrfs_(char *uplo, integer *n, integer *nrhs, 
	doublereal *d__, doublecomplex *e, doublereal *df, doublecomplex *ef, 
	doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, 
	doublereal *ferr, doublereal *berr, doublecomplex *work, doublereal *
	rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5, 
	    i__6;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10, 
	    d__11, d__12;
    doublecomplex z__1, z__2, z__3;

    /* Builtin functions */
    double d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *);

    /* Local variables */
    integer i__, j;
    doublereal s;
    doublecomplex bi, cx, dx, ex;
    integer ix, nz;
    doublereal eps, safe1, safe2;
    extern logical lsame_(char *, char *);
    integer count;
    logical upper;
    extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal lstres;
    extern /* Subroutine */ int zpttrs_(char *, integer *, integer *, 
	    doublereal *, doublecomplex *, doublecomplex *, integer *, 
	    integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPTRFS improves the computed solution to a system of linear */
/*  equations when the coefficient matrix is Hermitian positive definite */
/*  and tridiagonal, and provides error bounds and backward error */
/*  estimates for the solution. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the superdiagonal or the subdiagonal of the */
/*          tridiagonal matrix A is stored and the form of the */
/*          factorization: */
/*          = 'U':  E is the superdiagonal of A, and A = U**H*D*U; */
/*          = 'L':  E is the subdiagonal of A, and A = L*D*L**H. */
/*          (The two forms are equivalent if A is real.) */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n real diagonal elements of the tridiagonal matrix A. */

/*  E       (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) off-diagonal elements of the tridiagonal matrix A */
/*          (see UPLO). */

/*  DF      (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the diagonal matrix D from */
/*          the factorization computed by ZPTTRF. */

/*  EF      (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) off-diagonal elements of the unit bidiagonal */
/*          factor U or L from the factorization computed by ZPTTRF */
/*          (see UPLO). */

/*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
/*          On entry, the solution matrix X, as computed by ZPTTRS. */
/*          On exit, the improved solution matrix X. */

//.........这里部分代码省略.........
开发者ID:dacap,项目名称:loseface,代码行数:101,代码来源:zptrfs.c


示例15: d_imag

/* Subroutine */ int zget22_(char *transa, char *transe, char *transw, 
	integer *n, doublecomplex *a, integer *lda, doublecomplex *e, integer 
	*lde, doublecomplex *w, doublecomplex *work, doublereal *rwork, 
	doublereal *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, e_dim1, e_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer j;
    doublereal ulp;
    integer joff, jcol, jvec;
    doublereal unfl;
    integer jrow;
    doublereal temp1;
    extern logical lsame_(char *, char *);
    char norma[1];
    doublereal anorm;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    char norme[1];
    doublereal enorm;
    doublecomplex wtemp;
    extern doublereal dlamch_(char *), zlange_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *);
    doublereal enrmin, enrmax;
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    integer itrnse;
    doublereal errnrm;
    integer itrnsw;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGET22 does an eigenvector check. */

/*  The basic test is: */

/*     RESULT(1) = | A E  -  E W | / ( |A| |E| ulp ) */

/*  using the 1-norm.  It also tests the normalization of E: */

/*     RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) */
/*                  j */

/*  where E(j) is the j-th eigenvector, and m-norm is the max-norm of a */
/*  vector.  The max-norm of a complex n-vector x in this case is the */
/*  max 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ d_inode函数代码示例发布时间:2022-05-30
下一篇:
C++ d_free函数代码示例发布时间:2022-05-30
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap