• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C++ MP_CHECKOK函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中MP_CHECKOK函数的典型用法代码示例。如果您正苦于以下问题:C++ MP_CHECKOK函数的具体用法?C++ MP_CHECKOK怎么用?C++ MP_CHECKOK使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了MP_CHECKOK函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1: ec_GFp_mul_mont

/* Field multiplication using Montgomery reduction. */
mp_err
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
				const GFMethod *meth)
{
	mp_err res = MP_OKAY;

#ifdef MP_MONT_USE_MP_MUL
	/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
	 * is not implemented and we have to use mp_mul and s_mp_redc directly 
	 */
	MP_CHECKOK(mp_mul(a, b, r));
	MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
#else
	mp_int s;

	MP_DIGITS(&s) = 0;
	/* s_mp_mul_mont doesn't allow source and destination to be the same */
	if ((a == r) || (b == r)) {
		MP_CHECKOK(mp_init(&s));
		MP_CHECKOK(s_mp_mul_mont
				   (a, b, &s, (mp_mont_modulus *) meth->extra1));
		MP_CHECKOK(mp_copy(&s, r));
		mp_clear(&s);
	} else {
		return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
	}
#endif
  CLEANUP:
	return res;
}
开发者ID:Akin-Net,项目名称:mozilla-central,代码行数:31,代码来源:ecp_mont.c


示例2: gf2m_Madd

/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
 * Montgomery projective coordinates. Uses algorithm Madd in appendix of
 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
 * GF(2^m) without precomputation". */
static mp_err
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
                  const ECGroup *group, int kmflag)
{
        mp_err res = MP_OKAY;
        mp_int t1, t2;

        MP_DIGITS(&t1) = 0;
        MP_DIGITS(&t2) = 0;
        MP_CHECKOK(mp_init(&t1, kmflag));
        MP_CHECKOK(mp_init(&t2, kmflag));

        MP_CHECKOK(mp_copy(x, &t1));
        MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
        MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
        MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
        MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
        MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
        MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
        MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));

  CLEANUP:
        mp_clear(&t1);
        mp_clear(&t2);
        return res;
}
开发者ID:AntinZhu,项目名称:jdk-source,代码行数:30,代码来源:ec2_mont.c


示例3: ECGroup_new

/* Allocate memory for a new ECGroup object. */
ECGroup *
ECGroup_new()
{
    mp_err res = MP_OKAY;
    ECGroup *group;
    group = (ECGroup *) malloc(sizeof(ECGroup));
    if (group == NULL)
        return NULL;
    group->constructed = MP_YES;
    group->meth = NULL;
    group->text = NULL;
    MP_DIGITS(&group->curvea) = 0;
    MP_DIGITS(&group->curveb) = 0;
    MP_DIGITS(&group->genx) = 0;
    MP_DIGITS(&group->geny) = 0;
    MP_DIGITS(&group->order) = 0;
    group->base_point_mul = NULL;
    group->points_mul = NULL;
    group->validate_point = NULL;
    group->extra1 = NULL;
    group->extra2 = NULL;
    group->extra_free = NULL;
    MP_CHECKOK(mp_init(&group->curvea));
    MP_CHECKOK(mp_init(&group->curveb));
    MP_CHECKOK(mp_init(&group->genx));
    MP_CHECKOK(mp_init(&group->geny));
    MP_CHECKOK(mp_init(&group->order));

CLEANUP:
    if (res != MP_OKAY) {
        ECGroup_free(group);
        return NULL;
    }
    return group;
}
开发者ID:louisshih,项目名称:jxcore,代码行数:36,代码来源:ecl.c


示例4: s_mp_redc

/* computes T = REDC(T), 2^b == R */
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
{
  mp_err res;
  mp_size i;

  i = MP_USED(T) + MP_USED(&mmm->N) + 2;
  MP_CHECKOK( s_mp_pad(T, i) );
  for (i = 0; i < MP_USED(&mmm->N); ++i ) {
    mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
    /* T += N * m_i * (MP_RADIX ** i); */
    MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
  }
  s_mp_clamp(T);

  /* T /= R */
  s_mp_div_2d(T, mmm->b); 

  if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
    /* T = T - N */
    MP_CHECKOK( s_mp_sub(T, &mmm->N) );
#ifdef DEBUG
    if ((res = mp_cmp(T, &mmm->N)) >= 0) {
      res = MP_UNDEF;
      goto CLEANUP;
    }
#endif
  }
  res = MP_OKAY;
CLEANUP:
  return res;
}
开发者ID:AlfredArouna,项目名称:illumos-gate,代码行数:32,代码来源:mpmontg.c


示例5: testPointDoubleJac

/* Test point doubling in Jacobian coordinates */
mp_err
testPointDoubleJac(ECGroup *ecgroup)
{
	mp_err res;
	mp_int pz, rx, ry, rz, rx2, ry2, rz2;
	ecfp_jac_pt p, p2;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&rz) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;

	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&rz));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));

	MP_CHECKOK(mp_set_int(&pz, 5));

	/* Set p2 = 2P */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(p.z, &pz, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	group->pt_dbl_jac(&p, &p2, group);
	M_TimeOperation(group->pt_dbl_jac(&p, &p2, group), 100000);

	/* Calculate doubling to compare against */
	ec_GFp_pt_dbl_jac(&ecgroup->genx, &ecgroup->geny, &pz, &rx2, &ry2,
					  &rz2, ecgroup);
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	/* Do comparison */
	MP_CHECKOK(testJacPoint(&p2, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Doubling - Jacobian\n");
	else
		printf("TEST FAILED - Point Doubling - Jacobian\n");

	mp_clear(&pz);
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&rz);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);

	return res;
}
开发者ID:AOSC-Dev,项目名称:nss-purified,代码行数:60,代码来源:ecp_fpt.c


示例6: s_mp_to_mont

STATIC
mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
{
  mp_err res;

  /* xMont = x * R mod N   where  N is modulus */
  MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) );  		/* xMont = x << b */
  MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) );	/*         mod N */
CLEANUP:
  return res;
}
开发者ID:tcdog001,项目名称:apv5sdk-v15,代码行数:11,代码来源:mpmontg.c


示例7: ec_GFp_enc_mont

/* Encode a field element in Montgomery form. See s_mp_to_mont in
 * mpi/mpmontg.c */
mp_err
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
	mp_mont_modulus *mmm;
	mp_err res = MP_OKAY;

	mmm = (mp_mont_modulus *) meth->extra1;
	MP_CHECKOK(mpl_lsh(a, r, mmm->b));
	MP_CHECKOK(mp_mod(r, &mmm->N, r));
  CLEANUP:
	return res;
}
开发者ID:Akin-Net,项目名称:mozilla-central,代码行数:14,代码来源:ecp_mont.c


示例8: ec_GFp_dec_mont

/* Decode a field element from Montgomery form. */
mp_err
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
	mp_err res = MP_OKAY;

	if (a != r) {
		MP_CHECKOK(mp_copy(a, r));
	}
	MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
  CLEANUP:
	return res;
}
开发者ID:Akin-Net,项目名称:mozilla-central,代码行数:13,代码来源:ecp_mont.c


示例9: testPointMulTime

/* Tests the time required for a point multiplication */
mp_err
testPointMulTime(ECGroup *ecgroup)
{
	mp_err res = MP_OKAY;
	mp_int rx, ry, n;
	int size;

	MP_DIGITS(&rx) = 0;
	MP_DIGITS(&ry) = 0;
	MP_DIGITS(&n) = 0;

	MP_CHECKOK(mp_init(&rx));
	MP_CHECKOK(mp_init(&ry));
	MP_CHECKOK(mp_init(&n));

	/* compute random scalar */
	size = mpl_significant_bits(&ecgroup->meth->irr);
	if (size < MP_OKAY) {
		res = MP_NO;
		goto CLEANUP;
	}

	MP_CHECKOK(mpp_random_size(&n, (size + ECL_BITS - 1) / ECL_BITS));
	MP_CHECKOK(ecgroup->meth->field_mod(&n, &n, ecgroup->meth));

	M_TimeOperation(ec_GFp_pt_mul_jac_fp
					(&n, &ecgroup->genx, &ecgroup->geny, &rx, &ry,
					 ecgroup), 1000);

	M_TimeOperation(ec_GFp_point_mul_jac_4w_fp
					(&n, &ecgroup->genx, &ecgroup->geny, &rx, &ry,
					 ecgroup), 1000);

	M_TimeOperation(ec_GFp_point_mul_wNAF_fp
					(&n, &ecgroup->genx, &ecgroup->geny, &rx, &ry,
					 ecgroup), 1000);

	M_TimeOperation(ec_GFp_pt_mul_jac
					(&n, &ecgroup->genx, &ecgroup->geny, &rx, &ry,
					 ecgroup), 100);

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Multiplication Timing\n");
	else
		printf("TEST FAILED - Point Multiplication Timing\n");
	mp_clear(&rx);
	mp_clear(&ry);
	mp_clear(&n);

	return res;
}
开发者ID:AOSC-Dev,项目名称:nss-purified,代码行数:53,代码来源:ecp_fpt.c


示例10: ec_GFp_pt_sub_aff

/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
 * identical. Uses affine coordinates. Assumes input is already
 * field-encoded using field_enc, and returns output that is still
 * field-encoded. */
mp_err
ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
                  const mp_int *qy, mp_int *rx, mp_int *ry,
                  const ECGroup *group)
{
    mp_err res = MP_OKAY;
    mp_int nqy;

    MP_DIGITS(&nqy) = 0;
    MP_CHECKOK(mp_init(&nqy));
    /* nqy = -qy */
    MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
    res = group->point_add(px, py, qx, &nqy, rx, ry, group);
CLEANUP:
    mp_clear(&nqy);
    return res;
}
开发者ID:MichaelKohler,项目名称:gecko-dev,代码行数:21,代码来源:ecp_aff.c


示例11: s_mp_mul_mont

/*! c <- REDC( a * b ) mod N
    \param a < N  i.e. "reduced"
    \param b < N  i.e. "reduced"
    \param mmm modulus N and n0' of N
*/
mp_err
s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
              mp_mont_modulus *mmm)
{
    mp_digit *pb;
    mp_digit m_i;
    mp_err res;
    mp_size ib; /* "index b": index of current digit of B */
    mp_size useda, usedb;

    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);

    if (MP_USED(a) < MP_USED(b)) {
        const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
        b = a;
        a = xch;
    }

    MP_USED(c) = 1;
    MP_DIGIT(c, 0) = 0;
    ib = (MP_USED(&mmm->N) << 1) + 1;
    if ((res = s_mp_pad(c, ib)) != MP_OKAY)
        goto CLEANUP;

    useda = MP_USED(a);
    pb = MP_DIGITS(b);
    s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
    s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
    m_i = MP_DIGIT(c, 0) * mmm->n0prime;
    s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);

    /* Outer loop:  Digits of b */
    usedb = MP_USED(b);
    for (ib = 1; ib < usedb; ib++) {
        mp_digit b_i = *pb++;

        /* Inner product:  Digits of a */
        if (b_i)
            s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
        m_i = MP_DIGIT(c, ib) * mmm->n0prime;
        s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
    }
    if (usedb < MP_USED(&mmm->N)) {
        for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib) {
            m_i = MP_DIGIT(c, ib) * mmm->n0prime;
            s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
        }
    }
    s_mp_clamp(c);
    s_mp_rshd(c, MP_USED(&mmm->N)); /* c /= R */
    if (s_mp_cmp(c, &mmm->N) >= 0) {
        MP_CHECKOK(s_mp_sub(c, &mmm->N));
    }
    res = MP_OKAY;

CLEANUP:
    return res;
}
开发者ID:emaldona,项目名称:nss,代码行数:63,代码来源:mpmontg.c


示例12: ec_GFp_div_mont

/* Field division using Montgomery reduction. */
mp_err
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
				const GFMethod *meth)
{
	mp_err res = MP_OKAY;

	/* if A=aZ represents a encoded in montgomery coordinates with Z and # 
	 * and \ respectively represent multiplication and division in
	 * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
	 * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
	MP_CHECKOK(ec_GFp_div(a, b, r, meth));
	MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
	if (a == NULL) {
		MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
	}
  CLEANUP:
	return res;
}
开发者ID:Akin-Net,项目名称:mozilla-central,代码行数:19,代码来源:ecp_mont.c


示例13: testPointDoubleChud

/* Tests point doubling in Chudnovsky Jacobian coordinates */
mp_err
testPointDoubleChud(ECGroup *ecgroup)
{
	mp_err res;
	mp_int px, py, pz, rx2, ry2, rz2;
	ecfp_aff_pt p;
	ecfp_chud_pt p2;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_DIGITS(&px) = 0;
	MP_DIGITS(&py) = 0;
	MP_DIGITS(&pz) = 0;

	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));
	MP_CHECKOK(mp_init(&px));
	MP_CHECKOK(mp_init(&py));
	MP_CHECKOK(mp_init(&pz));

	/* Set p2 = 2P */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(group->curvea, &ecgroup->curvea, ecgroup);

	group->pt_dbl_aff2chud(&p, &p2, group);

	/* Calculate doubling to compare against */
	MP_CHECKOK(mp_set_int(&pz, 1));
	ec_GFp_pt_dbl_jac(&ecgroup->genx, &ecgroup->geny, &pz, &rx2, &ry2,
					  &rz2, ecgroup);
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	/* Do comparison and check az^4 */
	MP_CHECKOK(testChudPoint(&p2, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Doubling - Chudnovsky Jacobian\n");
	else
		printf("TEST FAILED - Point Doubling - Chudnovsky Jacobian\n");

	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);
	mp_clear(&px);
	mp_clear(&py);
	mp_clear(&pz);

	return res;
}
开发者ID:AOSC-Dev,项目名称:nss-purified,代码行数:55,代码来源:ecp_fpt.c


示例14: ec_GFp_pt_aff2jac

/* Converts a point P(px, py) from affine coordinates to Jacobian
 * projective coordinates R(rx, ry, rz). Assumes input is already
 * field-encoded using field_enc, and returns output that is still
 * field-encoded. */
mp_err
ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
				  mp_int *ry, mp_int *rz, const ECGroup *group)
{
	mp_err res = MP_OKAY;

	if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
		MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
	} else {
		MP_CHECKOK(mp_copy(px, rx));
		MP_CHECKOK(mp_copy(py, ry));
		MP_CHECKOK(mp_set_int(rz, 1));
		if (group->meth->field_enc) {
			MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
		}
	}
  CLEANUP:
	return res;
}
开发者ID:biddyweb,项目名称:switch-oss,代码行数:23,代码来源:ecp_jac.c


示例15: GFMethod_consGFp

/* Construct a generic GFMethod for arithmetic over prime fields with
 * irreducible irr. */
GFMethod *
GFMethod_consGFp(const mp_int *irr)
{
    mp_err res = MP_OKAY;
    GFMethod *meth = NULL;

    meth = GFMethod_new();
    if (meth == NULL)
        return NULL;

    MP_CHECKOK(mp_copy(irr, &meth->irr));
    meth->irr_arr[0] = mpl_significant_bits(irr);
    meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] =
        meth->irr_arr[4] = 0;
    switch (MP_USED(&meth->irr)) {
        /* maybe we need 1 and 2 words here as well?*/
        case 3:
            meth->field_add = &ec_GFp_add_3;
            meth->field_sub = &ec_GFp_sub_3;
            break;
        case 4:
            meth->field_add = &ec_GFp_add_4;
            meth->field_sub = &ec_GFp_sub_4;
            break;
        case 5:
            meth->field_add = &ec_GFp_add_5;
            meth->field_sub = &ec_GFp_sub_5;
            break;
        case 6:
            meth->field_add = &ec_GFp_add_6;
            meth->field_sub = &ec_GFp_sub_6;
            break;
        default:
            meth->field_add = &ec_GFp_add;
            meth->field_sub = &ec_GFp_sub;
    }
    meth->field_neg = &ec_GFp_neg;
    meth->field_mod = &ec_GFp_mod;
    meth->field_mul = &ec_GFp_mul;
    meth->field_sqr = &ec_GFp_sqr;
    meth->field_div = &ec_GFp_div;
    meth->field_enc = NULL;
    meth->field_dec = NULL;
    meth->extra1 = NULL;
    meth->extra2 = NULL;
    meth->extra_free = NULL;

CLEANUP:
    if (res != MP_OKAY) {
        GFMethod_free(meth);
        return NULL;
    }
    return meth;
}
开发者ID:Wafflespeanut,项目名称:gecko-dev,代码行数:56,代码来源:ecl_gf.c


示例16: ec_GFp_sub

/* Subtracts two field elements.  Assumes that 0 <= a, b < meth->irr */
mp_err
ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
           const GFMethod *meth)
{
    mp_err res = MP_OKAY;

    /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */
    res = mp_sub(a, b, r);
    if (res == MP_RANGE) {
        MP_CHECKOK(mp_sub(b, a, r));
        if (mp_cmp_z(r) < 0) {
            MP_CHECKOK(mp_add(r, &meth->irr, r));
        }
        MP_CHECKOK(ec_GFp_neg(r, r, meth));
    }
    if (mp_cmp_z(r) < 0) {
        MP_CHECKOK(mp_add(r, &meth->irr, r));
    }
CLEANUP:
    return res;
}
开发者ID:Wafflespeanut,项目名称:gecko-dev,代码行数:22,代码来源:ecl_gf.c


示例17: ec_GFp_div

/* Divides two field elements. If a is NULL, then returns the inverse of
 * b. */
mp_err
ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
           const GFMethod *meth)
{
    mp_err res = MP_OKAY;
    mp_int t;

    /* If a is NULL, then return the inverse of b, otherwise return a/b. */
    if (a == NULL) {
        return mp_invmod(b, &meth->irr, r);
    } else {
        /* MPI doesn't support divmod, so we implement it using invmod and
         * mulmod. */
        MP_CHECKOK(mp_init(&t));
        MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
        MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r));
    CLEANUP:
        mp_clear(&t);
        return res;
    }
}
开发者ID:Wafflespeanut,项目名称:gecko-dev,代码行数:23,代码来源:ecl_gf.c


示例18: ec_GF2m_div

/* Divides two field elements. If a is NULL, then returns the inverse of
 * b. */
mp_err
ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
            const GFMethod *meth)
{
    mp_err res = MP_OKAY;
    mp_int t;

    /* If a is NULL, then return the inverse of b, otherwise return a/b. */
    if (a == NULL) {
        /* The GF(2^m) portion of MPI doesn't support invmod, so we
         * compute 1/b. */
        MP_CHECKOK(mp_init(&t));
        MP_CHECKOK(mp_set_int(&t, 1));
        MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r));
    CLEANUP:
        mp_clear(&t);
        return res;
    } else {
        return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r);
    }
}
开发者ID:Wafflespeanut,项目名称:gecko-dev,代码行数:23,代码来源:ecl_gf.c


示例19: ECGroup_consGFp_mont

/* Construct a generic ECGroup for elliptic curves over prime fields with
 * field arithmetic implemented in Montgomery coordinates. */
ECGroup *
ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
                     const mp_int *curveb, const mp_int *genx,
                     const mp_int *geny, const mp_int *order, int cofactor)
{
    mp_err res = MP_OKAY;
    ECGroup *group = NULL;

    group = ECGroup_new();
    if (group == NULL)
        return NULL;

    group->meth = GFMethod_consGFp_mont(irr);
    if (group->meth == NULL) {
        res = MP_MEM;
        goto CLEANUP;
    }
    MP_CHECKOK(group->meth->
               field_enc(curvea, &group->curvea, group->meth));
    MP_CHECKOK(group->meth->
               field_enc(curveb, &group->curveb, group->meth));
    MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
    MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
    MP_CHECKOK(mp_copy(order, &group->order));
    group->cofactor = cofactor;
    group->point_add = &ec_GFp_pt_add_aff;
    group->point_sub = &ec_GFp_pt_sub_aff;
    group->point_dbl = &ec_GFp_pt_dbl_aff;
    group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
    group->base_point_mul = NULL;
    group->points_mul = &ec_GFp_pts_mul_jac;
    group->validate_point = &ec_GFp_validate_point;

CLEANUP:
    if (res != MP_OKAY) {
        ECGroup_free(group);
        return NULL;
    }
    return group;
}
开发者ID:louisshih,项目名称:jxcore,代码行数:42,代码来源:ecl.c


示例20: testPointAddJacAff

/* Tests point addition of Jacobian + Affine -> Jacobian */
mp_err
testPointAddJacAff(ECGroup *ecgroup)
{
	mp_err res;
	mp_int pz, rx2, ry2, rz2;
	ecfp_jac_pt p, r;
	ecfp_aff_pt q;
	EC_group_fp *group = (EC_group_fp *) ecgroup->extra1;

	/* Init */
	MP_DIGITS(&pz) = 0;
	MP_DIGITS(&rx2) = 0;
	MP_DIGITS(&ry2) = 0;
	MP_DIGITS(&rz2) = 0;
	MP_CHECKOK(mp_init(&pz));
	MP_CHECKOK(mp_init(&rx2));
	MP_CHECKOK(mp_init(&ry2));
	MP_CHECKOK(mp_init(&rz2));

	MP_CHECKOK(mp_set_int(&pz, 5));

	/* Set p */
	ecfp_i2fp(p.x, &ecgroup->genx, ecgroup);
	ecfp_i2fp(p.y, &ecgroup->geny, ecgroup);
	ecfp_i2fp(p.z, &pz, ecgroup);
	/* Set q */
	ecfp_i2fp(q.x, &ecgroup->geny, ecgroup);
	ecfp_i2fp(q.y, &ecgroup->genx, ecgroup);

	/* Do calculations */
	group->pt_add_jac_aff(&p, &q, &r, group);

	/* Do calculation in integer to compare against */
	MP_CHECKOK(ec_GFp_pt_add_jac_aff
			   (&ecgroup->genx, &ecgroup->geny, &pz, &ecgroup->geny,
				&ecgroup->genx, &rx2, &ry2, &rz2, ecgroup));
	/* convert result R to affine coordinates */
	ec_GFp_pt_jac2aff(&rx2, &ry2, &rz2, &rx2, &ry2, ecgroup);

	MP_CHECKOK(testJacPoint(&r, &rx2, &ry2, ecgroup));

  CLEANUP:
	if (res == MP_OKAY)
		printf("  Test Passed - Point Addition - Jacobian & Affine\n");
	else
		printf("TEST FAILED - Point Addition - Jacobian & Affine\n");

	mp_clear(&pz);
	mp_clear(&rx2);
	mp_clear(&ry2);
	mp_clear(&rz2);

	return res;
}
开发者ID:AOSC-Dev,项目名称:nss-purified,代码行数:55,代码来源:ecp_fpt.c



注:本文中的MP_CHECKOK函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ MP_DIGITS函数代码示例发布时间:2022-05-30
下一篇:
C++ MPV_common_end函数代码示例发布时间:2022-05-30
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap