本文整理汇总了C++中MPFR_ZIV_DECL函数的典型用法代码示例。如果您正苦于以下问题:C++ MPFR_ZIV_DECL函数的具体用法?C++ MPFR_ZIV_DECL怎么用?C++ MPFR_ZIV_DECL使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MPFR_ZIV_DECL函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。
示例1: mpfr_const_euler_internal
int
mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd)
{
mpfr_prec_t prec = MPFR_PREC(x), m, log2m;
mpfr_t y, z;
unsigned long n;
int inexact;
MPFR_ZIV_DECL (loop);
log2m = MPFR_INT_CEIL_LOG2 (prec);
m = prec + 2 * log2m + 23;
mpfr_init2 (y, m);
mpfr_init2 (z, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_exp_t exp_S, err;
/* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */
n = 1 + (unsigned long) ((double) m * LOG2 / 2.0);
MPFR_ASSERTD (n >= 9);
mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */
exp_S = MPFR_EXP(y);
mpfr_set_ui (z, n, MPFR_RNDN);
mpfr_log (z, z, MPFR_RNDD); /* error <= 1 ulp */
mpfr_sub (y, y, z, MPFR_RNDN); /* S'(n) - log(n) */
/* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */
err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y);
err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */
exp_S = MPFR_EXP(y);
mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */
mpfr_sub (y, y, z, MPFR_RNDN);
/* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y).
Since the result is between 0.5 and 1, ulp(y) = 2^(-m).
So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y).
3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */
err = err + exp_S - MPFR_EXP(y);
err = (err >= 1) ? err + 1 : 2;
if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd)))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (y, m);
mpfr_set_prec (z, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (x, y, rnd);
mpfr_clear (y);
mpfr_clear (z);
return inexact; /* always inexact */
}
开发者ID:119,项目名称:aircam-openwrt,代码行数:56,代码来源:const_euler.c
示例2: mpfr_erfc
int
mpfr_erfc (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
int inex;
mpfr_t tmp;
mpfr_exp_t te, err;
mpfr_prec_t prec;
mpfr_exp_t emin = mpfr_get_emin ();
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* erfc(+inf) = 0+, erfc(-inf) = 2 erfc (0) = 1 */
else if (MPFR_IS_INF (x))
return mpfr_set_ui (y, MPFR_IS_POS (x) ? 0 : 2, rnd);
else
return mpfr_set_ui (y, 1, rnd);
}
if (MPFR_SIGN (x) > 0)
{
/* by default, emin = 1-2^30, thus the smallest representable
number is 1/2*2^emin = 2^(-2^30):
for x >= 27282, erfc(x) < 2^(-2^30-1), and
for x >= 1787897414, erfc(x) < 2^(-2^62-1).
*/
if ((emin >= -1073741823 && mpfr_cmp_ui (x, 27282) >= 0) ||
mpfr_cmp_ui (x, 1787897414) >= 0)
{
/* May be incorrect if MPFR_EMAX_MAX >= 2^62. */
MPFR_ASSERTN ((MPFR_EMAX_MAX >> 31) >> 31 == 0);
return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
}
}
开发者ID:pgundlach,项目名称:LuaTeX,代码行数:44,代码来源:erfc.c
示例3: mpfr_sinh
int
mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mp_rnd_t rnd_mode)
{
mpfr_t x;
int inexact;
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
{
if (MPFR_IS_NAN (xt))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (xt))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
else /* xt is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (xt));
MPFR_SET_ZERO (y); /* sinh(0) = 0 */
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
}
/* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1,
rnd_mode, {});
MPFR_TMP_INIT_ABS (x, xt);
{
mpfr_t t, ti;
mp_exp_t d;
mp_prec_t Nt; /* Precision of the intermediary variable */
long int err; /* Precision of error */
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_MARK (expo);
/* compute the precision of intermediary variable */
Nt = MAX (MPFR_PREC (x), MPFR_PREC (y));
/* the optimal number of bits : see algorithms.ps */
Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
/* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */
if (MPFR_GET_EXP (x) < 0)
Nt -= 2*MPFR_GET_EXP (x);
/* initialise of intermediary variables */
MPFR_GROUP_INIT_2 (group, Nt, t, ti);
/* First computation of sinh */
MPFR_ZIV_INIT (loop, Nt);
for (;;) {
/* compute sinh */
mpfr_clear_flags ();
mpfr_exp (t, x, GMP_RNDD); /* exp(x) */
/* exp(x) can overflow! */
/* BUG/TODO/FIXME: exp can overflow but sinh may be representable! */
if (MPFR_UNLIKELY (mpfr_overflow_p ())) {
inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
break;
}
d = MPFR_GET_EXP (t);
mpfr_ui_div (ti, 1, t, GMP_RNDU); /* 1/exp(x) */
mpfr_sub (t, t, ti, GMP_RNDN); /* exp(x) - 1/exp(x) */
mpfr_div_2ui (t, t, 1, GMP_RNDN); /* 1/2(exp(x) - 1/exp(x)) */
/* it may be that t is zero (in fact, it can only occur when te=1,
and thus ti=1 too) */
if (MPFR_IS_ZERO (t))
err = Nt; /* double the precision */
else
{
/* calculation of the error */
d = d - MPFR_GET_EXP (t) + 2;
/* error estimate: err = Nt-(__gmpfr_ceil_log2(1+pow(2,d)));*/
err = Nt - (MAX (d, 0) + 1);
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode)))
{
inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
break;
}
}
/* actualisation of the precision */
Nt += err;
MPFR_ZIV_NEXT (loop, Nt);
MPFR_GROUP_REPREC_2 (group, Nt, t, ti);
}
MPFR_ZIV_FREE (loop);
MPFR_GROUP_CLEAR (group);
//.........这里部分代码省略.........
开发者ID:mmanley,项目名称:Antares,代码行数:101,代码来源:sinh.c
示例4: mpfr_ui_pow_ui
int
mpfr_ui_pow_ui (mpfr_ptr x, unsigned long int y, unsigned long int n,
mpfr_rnd_t rnd)
{
mpfr_exp_t err;
unsigned long m;
mpfr_t res;
mpfr_prec_t prec;
int size_n;
int inexact;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
if (MPFR_UNLIKELY (n <= 1))
{
if (n == 1)
return mpfr_set_ui (x, y, rnd); /* y^1 = y */
else
return mpfr_set_ui (x, 1, rnd); /* y^0 = 1 for any y */
}
else if (MPFR_UNLIKELY (y <= 1))
{
if (y == 1)
return mpfr_set_ui (x, 1, rnd); /* 1^n = 1 for any n > 0 */
else
return mpfr_set_ui (x, 0, rnd); /* 0^n = 0 for any n > 0 */
}
for (size_n = 0, m = n; m; size_n++, m >>= 1);
MPFR_SAVE_EXPO_MARK (expo);
prec = MPFR_PREC (x) + 3 + size_n;
mpfr_init2 (res, prec);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
int i = size_n;
inexact = mpfr_set_ui (res, y, MPFR_RNDU);
err = 1;
/* now 2^(i-1) <= n < 2^i: i=1+floor(log2(n)) */
for (i -= 2; i >= 0; i--)
{
inexact |= mpfr_mul (res, res, res, MPFR_RNDU);
err++;
if (n & (1UL << i))
inexact |= mpfr_mul_ui (res, res, y, MPFR_RNDU);
}
/* since the loop is executed floor(log2(n)) times,
we have err = 1+floor(log2(n)).
Since prec >= MPFR_PREC(x) + 4 + floor(log2(n)), prec > err */
err = prec - err;
if (MPFR_LIKELY (inexact == 0
|| MPFR_CAN_ROUND (res, err, MPFR_PREC (x), rnd)))
break;
/* Actualisation of the precision */
MPFR_ZIV_NEXT (loop, prec);
mpfr_set_prec (res, prec);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (x, res, rnd);
mpfr_clear (res);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (x, inexact, rnd);
}
开发者ID:Kirija,项目名称:XPIR,代码行数:71,代码来源:ui_pow_ui.c
示例5: mpfr_pow_si
//.........这里部分代码省略.........
* the rounding-to-nearest mode.
* + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
* overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
* 0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
* >= __gmpfr_emin - 1.
* - If n < -1 and expx < 0:
* + If expx < (__gmpfr_emax - 1) / n, then
* expx <= (__gmpfr_emax - 1) / n - 1
* < (__gmpfr_emax - 1) // n,
* and
* n * expx > __gmpfr_emax - 1,
* i.e.
* n * expx >= __gmpfr_emax.
* This corresponds to an overflow (2^(n * expx) has an
* exponent > __gmpfr_emax).
* + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
* overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
* 0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
* <= __gmpfr_emax - 1.
* Note: one could use expx bounds based on MPFR_EXP_MIN and
* MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
* current bounds do not lead to noticeably slower code and
* allow us to avoid a bug in Sun's compiler for Solaris/x86
* (when optimizations are enabled).
*/
expy =
n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
MPFR_EMIN_MIN - 2 /* Underflow */ :
n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
MPFR_EMAX_MAX /* Overflow */ : n * expx;
return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
expy, rnd);
}
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mp_prec_t Ny = MPFR_PREC (y); /* target precision */
mp_prec_t Nt; /* working precision */
mp_exp_t err; /* error */
int inexact;
unsigned long abs_n;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
abs_n = - (unsigned long) n;
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny);
MPFR_SAVE_EXPO_MARK (expo);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute 1/(x^n), with n > 0 */
mpfr_pow_ui (t, x, abs_n, GMP_RNDN);
mpfr_ui_div (t, 1, t, GMP_RNDN);
/* FIXME: old code improved, but I think this is still incorrect. */
if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
{
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (y, rnd == GMP_RNDN ? GMP_RNDZ : rnd,
abs_n & 1 ? MPFR_SIGN (x) :
MPFR_SIGN_POS);
}
if (MPFR_UNLIKELY (MPFR_IS_INF (t)))
{
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_overflow (y, rnd, abs_n & 1 ? MPFR_SIGN (x) :
MPFR_SIGN_POS);
}
/* error estimate -- see pow function in algorithms.ps */
err = Nt - 3;
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd)))
break;
/* actualisation of the precision */
Nt += BITS_PER_MP_LIMB;
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
}
}
开发者ID:mmanley,项目名称:Antares,代码行数:101,代码来源:pow_si.c
示例6: mpfr_agm
/* agm(x,y) is between x and y, so we don't need to save exponent range */
int
mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mp_rnd_t rnd_mode)
{
int compare, inexact;
mp_size_t s;
mp_prec_t p, q;
mp_limb_t *up, *vp, *tmpp;
mpfr_t u, v, tmp;
unsigned long n; /* number of iterations */
unsigned long err = 0;
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC (("op2[%#R]=%R op1[%#R]=%R rnd=%d", op2,op2,op1,op1,rnd_mode),
("r[%#R]=%R inexact=%d", r, r, inexact));
/* Deal with special values */
if (MPFR_ARE_SINGULAR (op1, op2))
{
/* If a or b is NaN, the result is NaN */
if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* now one of a or b is Inf or 0 */
/* If a and b is +Inf, the result is +Inf.
Otherwise if a or b is -Inf or 0, the result is NaN */
else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
{
if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
{
MPFR_SET_INF(r);
MPFR_SET_SAME_SIGN(r, op1);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
}
else /* a and b are neither NaN nor Inf, and one is zero */
{ /* If a or b is 0, the result is +0 since a sqrt is positive */
MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
MPFR_SET_POS (r);
MPFR_SET_ZERO (r);
MPFR_RET (0); /* exact */
}
}
MPFR_CLEAR_FLAGS (r);
/* If a or b is negative (excluding -Infinity), the result is NaN */
if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* Precision of the following calculus */
q = MPFR_PREC(r);
p = q + MPFR_INT_CEIL_LOG2(q) + 15;
MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
s = (p - 1) / BITS_PER_MP_LIMB + 1;
/* b (op2) and a (op1) are the 2 operands but we want b >= a */
compare = mpfr_cmp (op1, op2);
if (MPFR_UNLIKELY( compare == 0 ))
{
mpfr_set (r, op1, rnd_mode);
MPFR_RET (0); /* exact */
}
else if (compare > 0)
{
mpfr_srcptr t = op1;
op1 = op2;
op2 = t;
}
/* Now b(=op2) >= a (=op1) */
MPFR_TMP_MARK(marker);
/* Main loop */
MPFR_ZIV_INIT (loop, p);
for (;;)
{
mp_prec_t eq;
/* Init temporary vars */
MPFR_TMP_INIT (up, u, p, s);
MPFR_TMP_INIT (vp, v, p, s);
MPFR_TMP_INIT (tmpp, tmp, p, s);
/* Calculus of un and vn */
mpfr_mul (u, op1, op2, GMP_RNDN); /* Faster since PREC(op) < PREC(u) */
mpfr_sqrt (u, u, GMP_RNDN);
mpfr_add (v, op1, op2, GMP_RNDN); /* add with !=prec is still good*/
mpfr_div_2ui (v, v, 1, GMP_RNDN);
n = 1;
//.........这里部分代码省略.........
开发者ID:Scorpiion,项目名称:Renux_cross_gcc,代码行数:101,代码来源:agm.c
示例7: Gamma
/* We use the reflection formula
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
in order to treat the case x <= 1,
i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xp, GammaTrial, tmp, tmp2;
mpz_t fact;
mpfr_prec_t realprec;
int compared, is_integer;
int inex = 0; /* 0 means: result gamma not set yet */
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("gamma[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex));
/* Trivial cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_NEG (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF (gamma);
MPFR_SET_POS (gamma);
MPFR_RET (0); /* exact */
}
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_INF(gamma);
MPFR_SET_SAME_SIGN(gamma, x);
MPFR_SET_DIVBY0 ();
MPFR_RET (0); /* exact */
}
}
/* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ....
We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
number of consecutive zeroes or ones after the round bit is n-1 for an
input of n bits. But we need a more precise lower bound. Assume x has
n bits, and 1/x is near a floating-point number y of n+1 bits. We can
write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits.
Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e).
Two cases can happen:
(i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
are themselves powers of two, i.e., x is a power of two;
(ii) or X*Y is at distance at least one from 2^(f-e), thus
|xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
that the distance |y-1/x| >= 2^(-2n) ufp(y).
Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1,
if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y),
and round(1/x) with precision >= 2n+2 gives the correct result.
If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)).
*/
if (MPFR_GET_EXP (x) + 2
<= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
{
int sign = MPFR_SIGN (x); /* retrieve sign before possible override */
int special;
MPFR_BLOCK_DECL (flags);
MPFR_SAVE_EXPO_MARK (expo);
/* for overflow cases, see below; this needs to be done
before x possibly gets overridden. */
special =
MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX &&
MPFR_IS_POS_SIGN (sign) &&
MPFR_IS_LIKE_RNDD (rnd_mode, sign) &&
mpfr_powerof2_raw (x);
MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode));
if (inex == 0) /* x is a power of two */
{
/* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */
if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign))
inex = 1;
else
{
//.........这里部分代码省略.........
开发者ID:Canar,项目名称:mpfr,代码行数:101,代码来源:gamma.c
示例8: mpfr_sin
int
mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t c, xr;
mpfr_srcptr xx;
mpfr_exp_t expx, err;
mpfr_prec_t precy, m;
int inexact, sign, reduce;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
}
/* sin(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0,
rnd_mode, {});
MPFR_SAVE_EXPO_MARK (expo);
/* Compute initial precision */
precy = MPFR_PREC (y);
if (precy >= MPFR_SINCOS_THRESHOLD)
return mpfr_sin_fast (y, x, rnd_mode);
m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
expx = MPFR_GET_EXP (x);
mpfr_init (c);
mpfr_init (xr);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* first perform argument reduction modulo 2*Pi (if needed),
also helps to determine the sign of sin(x) */
if (expx >= 2) /* If Pi < x < 4, we need to reduce too, to determine
the sign of sin(x). For 2 <= |x| < Pi, we could avoid
the reduction. */
{
reduce = 1;
/* As expx + m - 1 will silently be converted into mpfr_prec_t
in the mpfr_set_prec call, the assert below may be useful to
avoid undefined behavior. */
MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX);
mpfr_set_prec (c, expx + m - 1);
mpfr_set_prec (xr, m);
mpfr_const_pi (c, MPFR_RNDN);
mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
mpfr_remainder (xr, x, c, MPFR_RNDN);
/* The analysis is similar to that of cos.c:
|xr - x - 2kPi| <= 2^(2-m). Thus we can decide the sign
of sin(x) if xr is at distance at least 2^(2-m) of both
0 and +/-Pi. */
mpfr_div_2ui (c, c, 1, MPFR_RNDN);
/* Since c approximates Pi with an error <= 2^(2-expx-m) <= 2^(-m),
it suffices to check that c - |xr| >= 2^(2-m). */
if (MPFR_SIGN (xr) > 0)
mpfr_sub (c, c, xr, MPFR_RNDZ);
else
mpfr_add (c, c, xr, MPFR_RNDZ);
if (MPFR_IS_ZERO(xr)
|| MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
|| MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
goto ziv_next;
/* |xr - x - 2kPi| <= 2^(2-m), thus |sin(xr) - sin(x)| <= 2^(2-m) */
xx = xr;
}
else /* the input argument is already reduced */
{
reduce = 0;
xx = x;
}
sign = MPFR_SIGN(xx);
/* now that the argument is reduced, precision m is enough */
mpfr_set_prec (c, m);
mpfr_cos (c, xx, MPFR_RNDZ); /* can't be exact */
mpfr_nexttoinf (c); /* now c = cos(x) rounded away */
mpfr_mul (c, c, c, MPFR_RNDU); /* away */
mpfr_ui_sub (c, 1, c, MPFR_RNDZ);
//.........这里部分代码省略.........
开发者ID:119,项目名称:aircam-openwrt,代码行数:101,代码来源:sin.c
示例9: mpfr_const_pi_internal
/* Don't need to save/restore exponent range: the cache does it */
int
mpfr_const_pi_internal (mpfr_ptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t a, A, B, D, S;
mpfr_prec_t px, p, cancel, k, kmax;
MPFR_ZIV_DECL (loop);
int inex;
MPFR_LOG_FUNC
(("rnd_mode=%d", rnd_mode),
("x[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(x), mpfr_log_prec, x, inex));
px = MPFR_PREC (x);
/* we need 9*2^kmax - 4 >= px+2*kmax+8 */
for (kmax = 2; ((px + 2 * kmax + 12) / 9) >> kmax; kmax ++);
p = px + 3 * kmax + 14; /* guarantees no recomputation for px <= 10000 */
mpfr_init2 (a, p);
mpfr_init2 (A, p);
mpfr_init2 (B, p);
mpfr_init2 (D, p);
mpfr_init2 (S, p);
MPFR_ZIV_INIT (loop, p);
for (;;) {
mpfr_set_ui (a, 1, MPFR_RNDN); /* a = 1 */
mpfr_set_ui (A, 1, MPFR_RNDN); /* A = a^2 = 1 */
mpfr_set_ui_2exp (B, 1, -1, MPFR_RNDN); /* B = b^2 = 1/2 */
mpfr_set_ui_2exp (D, 1, -2, MPFR_RNDN); /* D = 1/4 */
#define b B
#define ap a
#define Ap A
#define Bp B
for (k = 0; ; k++)
{
/* invariant: 1/2 <= B <= A <= a < 1 */
mpfr_add (S, A, B, MPFR_RNDN); /* 1 <= S <= 2 */
mpfr_div_2ui (S, S, 2, MPFR_RNDN); /* exact, 1/4 <= S <= 1/2 */
mpfr_sqrt (b, B, MPFR_RNDN); /* 1/2 <= b <= 1 */
mpfr_add (ap, a, b, MPFR_RNDN); /* 1 <= ap <= 2 */
mpfr_div_2ui (ap, ap, 1, MPFR_RNDN); /* exact, 1/2 <= ap <= 1 */
mpfr_mul (Ap, ap, ap, MPFR_RNDN); /* 1/4 <= Ap <= 1 */
mpfr_sub (Bp, Ap, S, MPFR_RNDN); /* -1/4 <= Bp <= 3/4 */
mpfr_mul_2ui (Bp, Bp, 1, MPFR_RNDN); /* -1/2 <= Bp <= 3/2 */
mpfr_sub (S, Ap, Bp, MPFR_RNDN);
MPFR_ASSERTN (mpfr_cmp_ui (S, 1) < 0);
cancel = mpfr_cmp_ui (S, 0) ? (mpfr_uexp_t) -mpfr_get_exp(S) : p;
/* MPFR_ASSERTN (cancel >= px || cancel >= 9 * (1 << k) - 4); */
mpfr_mul_2ui (S, S, k, MPFR_RNDN);
mpfr_sub (D, D, S, MPFR_RNDN);
/* stop when |A_k - B_k| <= 2^(k-p) i.e. cancel >= p-k */
if (cancel + k >= p)
break;
}
#undef b
#undef ap
#undef Ap
#undef Bp
mpfr_div (A, B, D, MPFR_RNDN);
/* MPFR_ASSERTN(p >= 2 * k + 8); */
if (MPFR_LIKELY (MPFR_CAN_ROUND (A, p - 2 * k - 8, px, rnd_mode)))
break;
p += kmax;
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (a, p);
mpfr_set_prec (A, p);
mpfr_set_prec (B, p);
mpfr_set_prec (D, p);
mpfr_set_prec (S, p);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (x, A, rnd_mode);
mpfr_clear (a);
mpfr_clear (A);
mpfr_clear (B);
mpfr_clear (D);
mpfr_clear (S);
return inex;
}
开发者ID:AhmadTux,项目名称:DragonFlyBSD,代码行数:88,代码来源:const_pi.c
示例10: mpfr_sinh
int
mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
{
mpfr_t x;
int inexact;
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
{
if (MPFR_IS_NAN (xt))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (xt))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
else /* xt is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (xt));
MPFR_SET_ZERO (y); /* sinh(0) = 0 */
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
}
/* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1,
rnd_mode, {});
MPFR_TMP_INIT_ABS (x, xt);
{
mpfr_t t, ti;
mpfr_exp_t d;
mpfr_prec_t Nt; /* Precision of the intermediary variable */
long int err; /* Precision of error */
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_MARK (expo);
/* compute the precision of intermediary variable */
Nt = MAX (MPFR_PREC (x), MPFR_PREC (y));
/* the optimal number of bits : see algorithms.ps */
Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
/* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */
if (MPFR_GET_EXP (x) < 0)
Nt -= 2*MPFR_GET_EXP (x);
/* initialise of intermediary variables */
MPFR_GROUP_INIT_2 (group, Nt, t, ti);
/* First computation of sinh */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
MPFR_BLOCK_DECL (flags);
/* compute sinh */
MPFR_BLOCK (flags, mpfr_exp (t, x, MPFR_RNDD));
if (MPFR_OVERFLOW (flags))
/* exp(x) does overflow */
{
/* sinh(x) = 2 * sinh(x/2) * cosh(x/2) */
mpfr_div_2ui (ti, x, 1, MPFR_RNDD); /* exact */
/* t <- cosh(x/2): error(t) <= 1 ulp(t) */
MPFR_BLOCK (flags, mpfr_cosh (t, ti, MPFR_RNDD));
if (MPFR_OVERFLOW (flags))
/* when x>1 we have |sinh(x)| >= cosh(x/2), so sinh(x)
overflows too */
{
inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
break;
}
/* ti <- sinh(x/2): , error(ti) <= 1 ulp(ti)
cannot overflow because 0 < sinh(x) < cosh(x) when x > 0 */
mpfr_sinh (ti, ti, MPFR_RNDD);
/* multiplication below, error(t) <= 5 ulp(t) */
MPFR_BLOCK (flags, mpfr_mul (t, t, ti, MPFR_RNDD));
if (MPFR_OVERFLOW (flags))
{
inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
break;
}
/* doubling below, exact */
//.........这里部分代码省略.........
开发者ID:Distrotech,项目名称:mpfr,代码行数:101,代码来源:sinh.c
示例11: log
/* Implements asymptotic expansion for jn or yn (formulae 9.2.5 and 9.2.6
from Abramowitz & Stegun).
Assumes |z| > p log(2)/2, where p is the target precision
(z can be negative only for jn).
Return 0 if the expansion does not converge enough (the value 0 as inexact
flag should not happen for normal input).
*/
static int
FUNCTION (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r)
{
mpfr_t s, c, P, Q, t, iz, err_t, err_s, err_u;
mpfr_prec_t w;
long k;
int inex, stop, diverge = 0;
mpfr_exp_t err2, err;
MPFR_ZIV_DECL (loop);
mpfr_init (c);
w = MPFR_PREC(res) + MPFR_INT_CEIL_LOG2(MPFR_PREC(res)) + 4;
MPFR_ZIV_INIT (loop, w);
for (;;)
{
mpfr_set_prec (c, w);
mpfr_init2 (s, w);
mpfr_init2 (P, w);
mpfr_init2 (Q, w);
mpfr_init2 (t, w);
mpfr_init2 (iz, w);
mpfr_init2 (err_t, 31);
mpfr_init2 (err_s, 31);
mpfr_init2 (err_u, 31);
/* Approximate sin(z) and cos(z). In the following, err <= k means that
the approximate value y and the true value x are related by
y = x * (1 + u)^k with |u| <= 2^(-w), following Higham's method. */
mpfr_sin_cos (s, c, z, MPFR_RNDN);
if (MPFR_IS_NEG(z))
mpfr_neg (s, s, MPFR_RNDN); /* compute jn/yn(|z|), fix sign later */
/* The absolute error on s/c is bounded by 1/2 ulp(1/2) <= 2^(-w-1). */
mpfr_add (t, s, c, MPFR_RNDN);
mpfr_sub (c, s, c, MPFR_RNDN);
mpfr_swap (s, t);
/* now s approximates sin(z)+cos(z), and c approximates sin(z)-cos(z),
with total absolute error bounded by 2^(1-w). */
/* precompute 1/(8|z|) */
mpfr_si_div (iz, MPFR_IS_POS(z) ? 1 : -1, z, MPFR_RNDN); /* err <= 1 */
mpfr_div_2ui (iz, iz, 3, MPFR_RNDN);
/* compute P and Q */
mpfr_set_ui (P, 1, MPFR_RNDN);
mpfr_set_ui (Q, 0, MPFR_RNDN);
mpfr_set_ui (t, 1, MPFR_RNDN); /* current term */
mpfr_set_ui (err_t, 0, MPFR_RNDN); /* error on t */
mpfr_set_ui (err_s, 0, MPFR_RNDN); /* error on P and Q (sum of errors) */
for (k = 1, stop = 0; stop < 4; k++)
{
/* compute next term: t(k)/t(k-1) = (2n+2k-1)(2n-2k+1)/(8kz) */
mpfr_mul_si (t, t, 2 * (n + k) - 1, MPFR_RNDN); /* err <= err_k + 1 */
mpfr_mul_si (t, t, 2 * (n - k) + 1, MPFR_RNDN); /* err <= err_k + 2 */
mpfr_div_ui (t, t, k, MPFR_RNDN); /* err <= err_k + 3 */
mpfr_mul (t, t, iz, MPFR_RNDN); /* err <= err_k + 5 */
/* the relative error on t is bounded by (1+u)^(5k)-1, which is
bounded by 6ku for 6ku <= 0.02: first |5 log(1+u)| <= |5.5u|
for |u| <= 0.15, then |exp(5.5u)-1| <= 6u for |u| <= 0.02. */
mpfr_mul_ui (err_t, t, 6 * k, MPFR_IS_POS(t) ? MPFR_RNDU : MPFR_RNDD);
mpfr_abs (err_t, err_t, MPFR_RNDN); /* exact */
/* the absolute error on t is bounded by err_t * 2^(-w) */
mpfr_abs (err_u, t, MPFR_RNDU);
mpfr_mul_2ui (err_u, err_u, w, MPFR_RNDU); /* t * 2^w */
mpfr_add (err_u, err_u, err_t, MPFR_RNDU); /* max|t| * 2^w */
if (stop >= 2)
{
/* take into account the neglected terms: t * 2^w */
mpfr_div_2ui (err_s, err_s, w, MPFR_RNDU);
if (MPFR_IS_POS(t))
mpfr_add (err_s, err_s, t, MPFR_RNDU);
else
mpfr_sub (err_s, err_s, t, MPFR_RNDU);
mpfr_mul_2ui (err_s, err_s, w, MPFR_RNDU);
stop ++;
}
/* if k is odd, add to Q, otherwise to P */
else if (k & 1)
{
/* if k = 1 mod 4, add, otherwise subtract */
if ((k & 2) == 0)
mpfr_add (Q, Q, t, MPFR_RNDN);
else
mpfr_sub (Q, Q, t, MPFR_RNDN);
/* check if the next term is smaller than ulp(Q): if EXP(err_u)
<= EXP(Q), since the current term is bounded by
err_u * 2^(-w), it is bounded by ulp(Q) */
if (MPFR_EXP(err_u) <= MPFR_EXP(Q))
stop ++;
else
stop = 0;
}
//.........这里部分代码省略.........
开发者ID:Kirija,项目名称:XPIR,代码行数:101,代码来源:jyn_asympt.c
示例12: mpfr_acos
int
mpfr_acos (mpfr_ptr acos, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xp, arcc, tmp;
mpfr_exp_t supplement;
mpfr_prec_t prec;
int sign, compared, inexact;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("acos[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec(acos), mpfr_log_prec, acos, inexact));
/* Singular cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (acos);
MPFR_RET_NAN;
}
else /* necessarily x=0 */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
/* acos(0)=Pi/2 */
MPFR_SAVE_EXPO_MARK (expo);
inexact = mpfr_const_pi (acos, rnd_mode);
mpfr_div_2ui (acos, acos, 1, rnd_mode); /* exact */
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (acos, inexact, rnd_mode);
}
}
/* Set x_p=|x| */
sign = MPFR_SIGN (x);
mpfr_init2 (xp, MPFR_PREC (x));
mpfr_abs (xp, x, MPFR_RNDN); /* Exact */
compared = mpfr_cmp_ui (xp, 1);
if (MPFR_UNLIKELY (compared >= 0))
{
mpfr_clear (xp);
if (compared > 0) /* acos(x) = NaN for x > 1 */
{
MPFR_SET_NAN(acos);
MPFR_RET_NAN;
}
else
{
if (MPFR_IS_POS_SIGN (sign)) /* acos(+1) = +0 */
return mpfr_set_ui (acos, 0, rnd_mode);
else /* acos(-1) = Pi */
return mpfr_const_pi (acos, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute the supplement */
mpfr_ui_sub (xp, 1, xp, MPFR_RNDD);
if (MPFR_IS_POS_SIGN (sign))
supplement = 2 - 2 * MPFR_GET_EXP (xp);
else
supplement = 2 - MPFR_GET_EXP (xp);
mpfr_clear (xp);
prec = MPFR_PREC (acos);
prec += MPFR_INT_CEIL_LOG2(prec) + 10 + supplement;
/* VL: The following change concerning prec comes from r3145
"Optimize mpfr_acos by choosing a better initial precision."
but it doesn't seem to be correct and leads to problems (assertion
failure or very important inefficiency) with tiny arguments.
Therefore, I've disabled it. */
/* If x ~ 2^-N, acos(x) ~ PI/2 - x - x^3/6
If Prec < 2*N, we can't round since x^3/6 won't be counted. */
#if 0
if (MPFR_PREC (acos) >= MPFR_PREC (x) && MPFR_GET_EXP (x) < 0)
{
mpfr_uexp_t pmin = (mpfr_uexp_t) (-2 * MPFR_GET_EXP (x)) + 5;
MPFR_ASSERTN (pmin <= MPFR_PREC_MAX);
if (prec < pmin)
prec = pmin;
}
#endif
mpfr_init2 (tmp, prec);
mpfr_init2 (arcc, prec);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
/* acos(x) = Pi/2 - asin(x) = Pi/2 - atan(x/sqrt(1-x^2)) */
mpfr_sqr (tmp, x, MPFR_RNDN);
mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN);
mpfr_sqrt (tmp, tmp, MPFR_RNDN);
mpfr_div (tmp, x, tmp, MPFR_RNDN);
//.........这里部分代码省略.........
开发者ID:MiKTeX,项目名称:miktex,代码行数:101,代码来源:acos.c
示例13: mpfr_exp_3
int
mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t t, x_copy, tmp;
mpz_t uk;
mp_exp_t ttt, shift_x;
unsigned long twopoweri;
mpz_t *P;
mp_prec_t *mult;
int i, k, loop;
int prec_x;
mp_prec_t realprec, Prec;
int iter;
int inexact = 0;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (ziv_loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
MPFR_SAVE_EXPO_MARK (expo);
/* decompose x */
/* we first write x = 1.xxxxxxxxxxxxx
----- k bits -- */
prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_BITS_PER_MP_LIMB;
if (prec_x < 0)
prec_x = 0;
ttt = MPFR_GET_EXP (x);
mpfr_init2 (x_copy, MPFR_PREC(x));
mpfr_set (x_copy, x, GMP_RNDD);
/* we shift to get a number less than 1 */
if (ttt > 0)
{
shift_x = ttt;
mpfr_div_2ui (x_copy, x, ttt, GMP_RNDN);
ttt = MPFR_GET_EXP (x_copy);
}
else
shift_x = 0;
MPFR_ASSERTD (ttt <= 0);
/* Init prec and vars */
realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
Prec = realprec + shift + 2 + shift_x;
mpfr_init2 (t, Prec);
mpfr_init2 (tmp, Prec);
mpz_init (uk);
/* Main loop */
MPFR_ZIV_INIT (ziv_loop, realprec);
for (;;)
{
int scaled = 0;
MPFR_BLOCK_DECL (flags);
k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_BITS_PER_MP_LIMB;
/* now we have to extract */
twopoweri = BITS_PER_MP_LIMB;
/* Allocate tables */
P = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
for (i = 0; i < 3*(k+2); i++)
mpz_init (P[i]);
mult = (mp_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mp_prec_t));
/* Particular case for i==0 */
mpfr_extract (uk, x_copy, 0);
MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
for (loop = 0; loop < shift; loop++)
mpfr_sqr (tmp, tmp, GMP_RNDD);
twopoweri *= 2;
/* General case */
iter = (k <= prec_x) ? k : prec_x;
for (i = 1; i <= iter; i++)
{
mpfr_extract (uk, x_copy, i);
if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
{
mpfr_exp_rational (t, uk, twopoweri - ttt, k - i + 1, P, mult);
mpfr_mul (tmp, tmp, t, GMP_RNDD);
}
MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
twopoweri *=2;
}
/* Clear tables */
for (i = 0; i < 3*(k+2); i++)
mpz_clear (P[i]);
(*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
(*__gmp_free_func) (mult, 2*(k+2)*sizeof(mp_prec_t));
if (shift_x > 0)
{
MPFR_BLOCK (flags, {
//.........这里部分代码省略.........
开发者ID:Scorpiion,项目名称:Renux_cross_gcc,代码行数:101,代码来源:exp3.c
示例14: mpfr_sinh_cosh
int
mpfr_sinh_cosh (mpfr_ptr sh, mpfr_ptr ch, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
{
mpfr_t x;
int inexact_sh, inexact_ch;
MPFR_ASSERTN (sh != ch);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
("sh[%Pu]=%.*Rg ch[%Pu]=%.*Rg",
mpfr_get_prec (sh), mpfr_log_prec, sh,
mpfr_get_prec (ch), mpfr_log_prec, ch));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
{
if (MPFR_IS_NAN (xt))
{
MPFR_SET_NAN (ch);
MPFR_SET_NAN (sh);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (xt))
{
MPFR_SET_INF (sh);
MPFR_SET_SAME_SIGN (sh, xt);
MPFR_SET_INF (ch);
MPFR_SET_POS (ch);
MPFR_RET (0);
}
else /* xt is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (xt));
MPFR_SET_ZERO (sh); /* sinh(0) = 0 */
MPFR_SET_SAME_SIGN (sh, xt);
inexact_sh = 0;
inexact_ch = mpfr_set_ui (ch, 1, rnd_mode); /* cosh(0) = 1 */
return INEX(inexact_sh,inexact_ch);
}
}
/* Warning: if we use MPFR_FAST_COMPUTE_IF_SMALL_INPUT here, make sure
that the code also works in case of overlap (see sin_cos.c) */
MPFR_TMP_INIT_ABS (x, xt);
{
mpfr_t s, c, ti;
mpfr_exp_t d;
mpfr_prec_t N; /* Precision of the intermediary variables */
long int err; /* Precision of error */
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_MARK (expo);
/* compute the precision of intermediary variable */
N = MPFR_PREC (ch);
N = MAX (N, MPFR_PREC (sh));
/* the optimal number of bits : see algorithms.ps */
N = N + MPFR_INT_CEIL_LOG2 (N) + 4;
/* initialise of intermediary variables */
MPFR_GROUP_INIT_3 (group, N, s, c, ti);
/* First computation of sinh_cosh */
MPFR_ZIV_INIT (loop, N);
for (;;)
{
MPFR_BLOCK_DECL (flags);
/* compute sinh_cosh */
MPFR_BLOCK (flags, mpfr_exp (s, x, MPFR_RNDD));
if (MPFR_OVERFLOW (flags))
/* exp(x) does overflow */
{
/* since cosh(x) >= exp(x), cosh(x) overflows too */
inexact_ch = mpfr_overflow (ch, rnd_mode, MPFR_SIGN_POS);
/* sinh(x) may be representable */
inexact_sh = mpfr_sinh (sh, xt, rnd_mode);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
break;
}
d = MPFR_GET_EXP (s);
mpfr_ui_div (ti, 1, s, MPFR_RNDU); /* 1/exp(x) */
mpfr_add (c, s, ti, MPFR_RNDU); /* exp(x) + 1/exp(x) */
mpfr_sub (s, s, ti, MPFR_RNDN); /* exp(x) - 1/exp(x) */
mpfr_div_2ui (c, c, 1, MPFR_RNDN); /* 1/2(exp(x) + 1/exp(x)) */
mpfr_div_2ui (s, s, 1, MPFR_RNDN); /* 1/2(exp(x) - 1/exp(x)) */
/* it may be that s is zero (in fact, it can only occur when exp(x)=1,
and thus ti=1 too) */
if (MPFR_IS_ZERO (s))
err = N; /* double the precision */
else
{
/* calculation of the error */
d = d - MPFR_GET_EXP (s) + 2;
//.........这里部分代码省略.........
开发者ID:aimanqais,项目名称:gerardus,代码行数:101,代码来源:sinh_cosh.c
示例15: mpfr_cos
int
mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t K0, K, precy, m, k, l;
int inexact, reduce = 0;
mpfr_t r, s, xr, c;
mpfr_exp_t exps, cancel = 0, expx;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_LOG_FUNC (
("x[%Pu]=%*.Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%*.Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */
expx = MPFR_GET_EXP (x);
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, -2 * expx,
1, 0, rnd_mode, expo, {});
/* Compute initial precision */
precy = MPFR_PREC (y);
if (precy >= MPFR_SINCOS_THRESHOLD)
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_
|
请发表评论