• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C++ abstract::Group类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C++中nox::abstract::Group的典型用法代码示例。如果您正苦于以下问题:C++ Group类的具体用法?C++ Group怎么用?C++ Group使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Group类的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C++代码示例。

示例1:

void NOX::MeritFunction::SumOfSquares::
computeGradient(const NOX::Abstract::Group& grp,
        NOX::Abstract::Vector& result) const
{
  if ( !(grp.isF()) ) {
    utils->err()
      << "ERROR: NOX::MeritFunction::SumOfSquares::computeGradient() - "
      << "F has not been computed yet!.  Please call "
      << "computeF() on the group passed into this function."
      << std::endl;
    throw "NOX Error";
  }

  if ( !(grp.isJacobian()) ) {
    utils->err()
      << "ERROR: NOX::MeritFunction::SumOfSquares::computeGradient() - "
      << "Jacobian has not been computed yet!.  Please call "
      << "computeJacobian() on the group passed into this function."
      << std::endl;
    throw "NOX Error";
  }

  NOX::Abstract::Group::ReturnType status =
    grp.applyJacobianTranspose(grp.getF(), result);

  if (status != NOX::Abstract::Group::Ok) {
    utils->err() << "ERROR: NOX::MeritFunction::SumOfSquares::compute"
         << "Gradient - applyJacobianTranspose failed!" << std::endl;
    throw "NOX Error";
  }

  return;
}
开发者ID:00liujj,项目名称:trilinos,代码行数:33,代码来源:NOX_MeritFunction_SumOfSquares.C


示例2:

double
NOX::Solver::TensorBased::getNormModelResidual(
                                       const NOX::Abstract::Vector& dir,
                       const NOX::Abstract::Group& soln,
                       bool isTensorModel) const
{

  // Compute residual of Newton model...
  Teuchos::RCP<NOX::Abstract::Vector> residualPtr =
    soln.getF().clone(ShapeCopy);
  soln.applyJacobian(dir, *residualPtr);
  numJvMults++;
  residualPtr->update(1.0, soln.getF(), 1.0);

  // Compute residual of Tensor model, if requested...
  if (isTensorModel)
  {
    double tmp = sVecPtr->innerProduct(dir);
    if (utilsPtr->isPrintType(NOX::Utils::Details))
      utilsPtr->out() << " sc'*dt   = " << utilsPtr->sciformat(tmp, 6) << std::endl;
    residualPtr->update(tmp*tmp, *aVecPtr, 1.0);
  }

  double modelNorm = residualPtr->norm();
  return modelNorm;
}
开发者ID:KineticTheory,项目名称:Trilinos,代码行数:26,代码来源:NOX_Solver_TensorBased.C


示例3: switch

double NOX::StatusTest::NormF::computeNorm(const NOX::Abstract::Group& grp)
{
  if (!grp.isF())
    return -1.0;

  double norm;
  int n = grp.getX().length();

  switch (normType) 
  {
    
  case NOX::Abstract::Vector::TwoNorm:
    norm = grp.getNormF();
    if (scaleType == Scaled)
      norm /= sqrt(1.0 * n);
    break;

  default:
    norm = grp.getF().norm(normType);
    if (scaleType == Scaled)
      norm /= n;
    break;

  }

  return norm;
}
开发者ID:,项目名称:,代码行数:27,代码来源:


示例4: if

bool NOX::Direction::ModifiedNewton::
compute(NOX::Abstract::Vector& dir, 
	NOX::Abstract::Group& soln, 
	const NOX::Solver::Generic& solver)
{
  NOX::Abstract::Group::ReturnType status;

  // Compute F at current solution
  status = soln.computeF();
  if (status != NOX::Abstract::Group::Ok)
    throwError("compute", "Unable to compute F");

  maxAgeOfJacobian = paramsPtr->sublist("Modified-Newton").get("Max Age of Jacobian", 10);

  if (Teuchos::is_null(oldJacobianGrpPtr)) {
    oldJacobianGrpPtr = soln.clone(DeepCopy);
  }
  NOX::Abstract::Group& oldJacobianGrp = *oldJacobianGrpPtr;
  
  status = NOX::Abstract::Group::Failed;
  while (status != NOX::Abstract::Group::Ok) {
    // Conditionally compute Jacobian at current solution.
    if ( (ageOfJacobian == -1) || (ageOfJacobian == maxAgeOfJacobian) ) {

      if (ageOfJacobian > 0) 
        oldJacobianGrp = soln;
      status = oldJacobianGrp.computeJacobian();
      if (status != NOX::Abstract::Group::Ok) 
        throwError("compute", "Unable to compute Jacobian");
      ageOfJacobian = 1;
    } 
    else 
      ageOfJacobian++;

    // Compute the Modified Newton direction
    status = oldJacobianGrp.applyJacobianInverse(paramsPtr->sublist("Modified-Newton").sublist("Linear Solver"), soln.getF(), dir);
    dir.scale(-1.0);

    // It didn't converge, but maybe we can recover.
    if ((status != NOX::Abstract::Group::Ok) &&
        (doRescue == false)) {
      throwError("compute", "Unable to solve Newton system");
    }
    else if ((status != NOX::Abstract::Group::Ok) &&
             (doRescue == true)) {
      if (utils->isPrintType(NOX::Utils::Warning))
        utils->out() << "WARNING: NOX::Direction::ModifiedNewton::compute() - "
             << "Linear solve failed to achieve convergence - "
             << "using the step anyway since \"Rescue Bad Newton Solve\" "
             << "is true. Also, flagging recompute of Jacobian." << std::endl;
      ageOfJacobian = maxAgeOfJacobian;
      status = NOX::Abstract::Group::Ok;
    }
  }

  return true;
}
开发者ID:gitter-badger,项目名称:quinoa,代码行数:57,代码来源:NOX_Direction_ModifiedNewton.C


示例5: if

bool NOX::Direction::Newton::compute(NOX::Abstract::Vector& dir, 
				     NOX::Abstract::Group& soln, 
				     const NOX::Solver::Generic& solver)
{
  NOX::Abstract::Group::ReturnType status;

  // Compute F at current solution.
  status = soln.computeF();
  if (status != NOX::Abstract::Group::Ok) 
    NOX::Direction::Newton::throwError("compute", "Unable to compute F");

  // Reset the linear solver tolerance.
  if (useAdjustableForcingTerm) {
    resetForcingTerm(soln, solver.getPreviousSolutionGroup(), 
		     solver.getNumIterations(), solver);
  }
  else { 
    if (utils->isPrintType(Utils::Details)) {
      utils->out() << "       CALCULATING FORCING TERM" << endl;
      utils->out() << "       Method: Constant" << endl;
      utils->out() << "       Forcing Term: " << eta_k << endl;
    }
  }

  // Compute Jacobian at current solution.
  status = soln.computeJacobian();
  if (status != NOX::Abstract::Group::Ok) 
    NOX::Direction::Newton::throwError("compute", "Unable to compute Jacobian");
  
  // Compute the Newton direction
  status = soln.computeNewton(paramsPtr->sublist("Newton").sublist("Linear Solver"));
  
  // It didn't converge, but maybe we can recover. 
  if ((status != NOX::Abstract::Group::Ok) &&
      (doRescue == false)) {
    NOX::Direction::Newton::throwError("compute", 
				       "Unable to solve Newton system");
  }
  else if ((status != NOX::Abstract::Group::Ok) &&
	   (doRescue == true)) {
    if (utils->isPrintType(NOX::Utils::Warning))
      utils->out() << "WARNING: NOX::Direction::Newton::compute() - Linear solve "
	   << "failed to achieve convergence - using the step anyway " 
	   << "since \"Rescue Bad Newton Solve\" is true " << endl;
  }

  // Set search direction.
  dir = soln.getNewton();

  return true;
}
开发者ID:haripandey,项目名称:trilinos,代码行数:51,代码来源:NOX_Direction_Newton.C


示例6: return

double NOX::MeritFunction::SumOfSquares::
computef(const NOX::Abstract::Group& grp) const
{
  if ( !(grp.isF()) ) {
    utils->err()
      << "ERROR: NOX::MeritFunction::SumOfSquares::computef() - "
      << "F has not been computed yet!.  Please call "
      << "computeF() on the group passed into this function."
      << std::endl;
    throw "NOX Error";
  }

  return (0.5 * grp.getNormF() * grp.getNormF());
}
开发者ID:00liujj,项目名称:trilinos,代码行数:14,代码来源:NOX_MeritFunction_SumOfSquares.C


示例7:

bool NOX::LineSearch::Polynomial::
updateGrp(NOX::Abstract::Group& newGrp,
      const NOX::Abstract::Group& oldGrp,
      const NOX::Abstract::Vector& dir,
      double step) const
{
  newGrp.computeX(oldGrp, dir, step);

  NOX::Abstract::Group::ReturnType status = newGrp.computeF();
  if (status != NOX::Abstract::Group::Ok)
    return false;

  return true;
}
开发者ID:00liujj,项目名称:trilinos,代码行数:14,代码来源:NOX_LineSearch_Polynomial.C


示例8:

bool  NOX::Direction::ModifiedNewton::rescueBadNewtonSolve(const NOX::Abstract::Group& grp) const
{
  //! Check if the "rescue" option has been selected
  if (!doRescue)
    return false;

  //! See if the group has compute the accuracy
  double accuracy;
  NOX::Abstract::Group::ReturnType status = oldJacobianGrpPtr->getNormLastLinearSolveResidual(accuracy);
    
  // If this functionality is not supported in the group, return false
  /* NOTE FROM TAMMY: We could later modify this to acutally caluclate
     the error itself if it's just a matter of the status being
     NotDefined. */
  if (status != NOX::Abstract::Group::Ok) 
    return false;

  // Check if there is any improvement in the relative residual
  double normF = grp.getNormF();

  // If we can't reduce the relative norm at all, we're not happy
  if (accuracy >= normF) 
    return false;

  // Otherwise, we just print a warning and keep going
  if (utils->isPrintType(NOX::Utils::Warning))
    utils->out() << "WARNING: NOX::Direction::ModifiedNewton::compute - Unable to achieve desired linear solve accuracy." << std::endl;
  return true;

}
开发者ID:gitter-badger,项目名称:quinoa,代码行数:30,代码来源:NOX_Direction_ModifiedNewton.C


示例9: getNormModelResidual

void
NOX::Solver::TensorBased::printDirectionInfo(std::string dirName,
                    const NOX::Abstract::Vector& dir,
                    const NOX::Abstract::Group& soln,
                    bool isTensorModel) const
{
  double dirNorm = dir.norm();

  double residual = getNormModelResidual(dir, soln, isTensorModel);
  double residualRel = residual / soln.getNormF();

  double fprime = getDirectionalDerivative(dir, soln);
  double fprimeRel = fprime / dirNorm;

  if (utilsPtr->isPrintType(NOX::Utils::Details))
  {
    utilsPtr->out() << " " << dirName << " norm of model residual =   "
     << utilsPtr->sciformat(residual, 6) << " (abs)     "
     << utilsPtr->sciformat(residualRel, 6) << " (rel)" << std::endl;
    utilsPtr->out() << " " << dirName << " directional derivative =  "
     << utilsPtr->sciformat(fprime, 6) << " (abs)    "
     << utilsPtr->sciformat(fprimeRel, 6) << " (rel)" << std::endl;
    utilsPtr->out() << " " << dirName << " norm = "
       << utilsPtr->sciformat(dirNorm, 6) << std::endl;
  }
}
开发者ID:KineticTheory,项目名称:Trilinos,代码行数:26,代码来源:NOX_Solver_TensorBased.C


示例10: if

double NOX::MeritFunction::SumOfSquares::
computeSlope(const NOX::Abstract::Vector& dir,
         const NOX::Abstract::Group& grp) const
{
  if (Teuchos::is_null(tmpVecPtr))
    tmpVecPtr = grp.getF().clone();

  // If the Jacobian is not computed, approximate it with
  // directional derivatives.  dir^T J^T F = F^T Jd
  if (!(grp.isJacobian()))
    return this->computeSlopeWithoutJacobian(dir, grp);
  // If the Jacobian is computed but doesn't support a gradient,
  // employ a different form for the inner product, eg
  // return <v, F> = F' * J * dir = <J'F, dir> = <g, dir>
  else if(!(grp.isGradient()))
    return this->computeSlopeWithoutJacobianTranspose(dir, grp);

  this->computeGradient(grp, *(tmpVecPtr.get()));

  return dir.innerProduct(*(tmpVecPtr.get()));
}
开发者ID:00liujj,项目名称:trilinos,代码行数:21,代码来源:NOX_MeritFunction_SumOfSquares.C


示例11: throwError

bool NOX::Direction::QuasiNewton::compute(NOX::Abstract::Vector& dir, 
					  NOX::Abstract::Group& soln, 
					  const Solver::Generic& solver)
{
  NOX::Abstract::Group::ReturnType status;
  
  // Compute F at current solution
  status = soln.computeF();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute F");

  // Compute Jacobian at current solution.
  status = soln.computeJacobian();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute Jacobian");

  // Compute the gradient at the current solution
  status = soln.computeGradient();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute gradient");

  // Push the old information onto the memory, but only after at least one previous iteration
  if (solver.getNumIterations() > 0) 
  {
    const NOX::Abstract::Group& oldSoln = solver.getPreviousSolutionGroup();
    if (oldSoln.isGradient())
      memory.add(soln.getX(), oldSoln.getX(), soln.getGradient(), oldSoln.getGradient());
  }

  // *** Calculate the QN direction ***
  
  // d = -g
  dir = soln.getGradient();
  dir.scale(-1.0);

  if (!memory.empty()) 
  {

    int m = memory.size();
    vector<double> alpha(m);
    double beta;
  
    for (int i = m-1; i >= 0; i --)
    {
      alpha[i] = memory[i].rho() * dir.innerProduct( memory[i].s() );
      dir.update(-1.0 * alpha[i], memory[i].y(), 1.0);
    }

    dir.scale( memory[m-1].sdoty() / memory[m-1].ydoty() );

    for (int i = 0; i < m; i ++)
    {
      beta = memory[i].rho() * dir.innerProduct( memory[i].y() );
      dir.update(alpha[i] - beta, memory[i].s(), 1.0);
    }
  }

  return true;
}
开发者ID:,项目名称:,代码行数:59,代码来源:


示例12: computeNorm

void NOX::StatusTest::NormF::relativeSetup(NOX::Abstract::Group& initialGuess)
{
  NOX::Abstract::Group::ReturnType rtype;
  rtype = initialGuess.computeF();
  if (rtype != NOX::Abstract::Group::Ok) 
  {
    utils.err() << "NOX::StatusTest::NormF::NormF - Unable to compute F" 
		<< endl;
    throw "NOX Error";
  }
    
  initialTolerance = computeNorm(initialGuess); 
  trueTolerance = specifiedTolerance * initialTolerance;
}
开发者ID:,项目名称:,代码行数:14,代码来源:


示例13: if

bool
NOX::Solver::TensorBased::implementGlobalStrategy(NOX::Abstract::Group& newGrp,
                      double& in_stepSize,
                      const NOX::Solver::Generic& s)
{
  bool ok;
  counter.incrementNumLineSearches();
  isNewtonDirection = false;
  NOX::Abstract::Vector& searchDirection = *tensorVecPtr;

  if ((counter.getNumLineSearches() == 1)  ||  (lsType == Newton))
  {
    isNewtonDirection = true;
    searchDirection = *newtonVecPtr;
  }

  // Do line search and compute new soln.
  if ((lsType != Dual) || (isNewtonDirection))
    ok = performLinesearch(newGrp, in_stepSize, searchDirection, s);
  else if (lsType == Dual)
  {
    double fTensor = 0.0;
    double fNew = 0.0;
    double tensorStep = 1.0;
    bool isTensorDescent = false;

    const Abstract::Group& oldGrp = s.getPreviousSolutionGroup();
    double fprime = slopeObj.computeSlope(searchDirection, oldGrp);

    // Backtrack along tensor direction if it is descent direction.
    if (fprime < 0)
    {
      ok = performLinesearch(newGrp, in_stepSize, searchDirection, s);
      assert(ok);
      fTensor = 0.5 * newGrp.getNormF() * newGrp.getNormF();
      tensorStep = in_stepSize;
      isTensorDescent = true;
    }

    // Backtrack along the Newton direction.
    ok = performLinesearch(newGrp, in_stepSize, *newtonVecPtr, s);
    fNew = 0.5 * newGrp.getNormF() * newGrp.getNormF();

    // If backtracking on the tensor step produced a better step, then use it.
    if (isTensorDescent  &&  (fTensor <= fNew))
    {
      newGrp.computeX(oldGrp, *tensorVecPtr, tensorStep);
      newGrp.computeF();
    }
  }

  return ok;
}
开发者ID:KineticTheory,项目名称:Trilinos,代码行数:53,代码来源:NOX_Solver_TensorBased.C


示例14:

bool NOX::Direction::Broyden::doRestart(NOX::Abstract::Group& soln, 
					const NOX::Solver::LineSearchBased& solver)
{
  // Test 1 - First iteration!
  if (solver.getNumIterations() == 0)
    return true;

  // Test 2 - Frequency
  if (cnt >= cntMax)
    return true;

  // Test 3 - Last step was zero!
  if (solver.getStepSize() == 0.0)
    return true;

  // Test 4 - Check for convergence rate
  convRate = soln.getNormF() / solver.getPreviousSolutionGroup().getNormF();
  if (convRate > maxConvRate)
    return true;

  return false;
}
开发者ID:haripandey,项目名称:trilinos,代码行数:22,代码来源:NOX_Direction_Broyden.C


示例15: while

bool NOX::LineSearch::Backtrack::
compute(NOX::Abstract::Group& grp, double& step,
    const NOX::Abstract::Vector& dir,
    const NOX::Solver::Generic& s)
{
  const Abstract::Group& oldGrp = s.getPreviousSolutionGroup();
  double oldF = meritFunctionPtr->computef(oldGrp);
  double newF;
  bool isFailed = false;

  step = defaultStep;
  grp.computeX(oldGrp, dir, step);

  NOX::Abstract::Group::ReturnType rtype;

  rtype = grp.computeF();
  if (rtype != NOX::Abstract::Group::Ok)
  {
    utils->err() << "NOX::LineSearch::BackTrack::compute - Unable to compute F"
        << std::endl;
    throw "NOX Error";
  }

  newF = meritFunctionPtr->computef(grp);
  int nIters = 1;

  if (utils->isPrintType(Utils::InnerIteration))
  {
   utils->out() << "\n" << Utils::fill(72) << "\n"
           << "-- Backtrack Line Search -- \n";
  }

  NOX::StatusTest::FiniteValue checkNAN;

  while ( ((newF >= oldF) || (checkNAN.finiteNumberTest(newF) !=0))
     && (!isFailed))
  {

    if (utils->isPrintType(Utils::InnerIteration))
    {
      utils->out() << std::setw(3) << nIters << ":";
      utils->out() << " step = " << utils->sciformat(step);
      utils->out() << " old f = " << utils->sciformat(oldF);
      utils->out() << " new f = " << utils->sciformat(newF);
      utils->out() << std::endl;
    }

    nIters ++;
    step = step * reductionFactor;

    if ((step < minStep) || (nIters > maxIters))
    {
      isFailed = true;
      step = recoveryStep;
    }

    grp.computeX(oldGrp, dir, step);

    rtype = grp.computeF();
    if (rtype != NOX::Abstract::Group::Ok)
    {
      utils->err() << "NOX::LineSearch::BackTrack::compute - Unable to compute F" << std::endl;
      throw "NOX Error";
    }

    newF = meritFunctionPtr->computef(grp);
  }

  if (utils->isPrintType(Utils::InnerIteration))
  {
    utils->out() << std::setw(3) << nIters << ":";
    utils->out() << " step = " << utils->sciformat(step);
    utils->out() << " old f = " << utils->sciformat(oldF);
    utils->out() << " new f = " << utils->sciformat(newF);
    if (isFailed)
      utils->out() << " (USING RECOVERY STEP!)" << std::endl;
    else
      utils->out() << " (STEP ACCEPTED!)" << std::endl;
    utils->out() << Utils::fill(72) << "\n" << std::endl;
  }

  return (!isFailed);
}
开发者ID:00liujj,项目名称:trilinos,代码行数:83,代码来源:NOX_LineSearch_Backtrack.C


示例16: if

// **************************************************************************
// *** computeForcingTerm
// **************************************************************************
double NOX::Direction::Utils::InexactNewton::
computeForcingTerm(const NOX::Abstract::Group& soln,
		   const NOX::Abstract::Group& oldsoln, 
		   int niter,
		   const NOX::Solver::Generic& solver,
		   double eta_last)
{
  const std::string indent = "       ";

  if (forcingTermMethod == Constant) {
    if (printing->isPrintType(NOX::Utils::Details)) {
      printing->out() << indent << "CALCULATING FORCING TERM" << std::endl;
      printing->out() << indent << "Method: Constant" << std::endl;
      printing->out() << indent << "Forcing Term: " << eta_k << std::endl;
    }
    if (setTolerance)
      paramsPtr->sublist(directionMethod).sublist("Linear Solver").
	set("Tolerance", eta_k);

    return eta_k;
  }

  // Get linear solver current tolerance. 
  // NOTE: These values are changing at each nonlinear iteration and 
  // must either be updated from the parameter list each time a compute 
  // is called or supplied during the function call!
  double eta_km1 = 0.0;
  if (eta_last < 0.0)
    eta_km1 = paramsPtr->sublist(directionMethod).
      sublist("Linear Solver").get("Tolerance", 0.0);
  else
    eta_km1 = eta_last;

  // Tolerance may have been adjusted in a line search algorithm so we 
  // have to account for this.
  const NOX::Solver::LineSearchBased* solverPtr = 0;
  solverPtr = dynamic_cast<const NOX::Solver::LineSearchBased*>(&solver);
  if (solverPtr != 0) {
    eta_km1 = 1.0 - solverPtr->getStepSize() * (1.0 - eta_km1);
  }

  if (printing->isPrintType(NOX::Utils::Details)) {
    printing->out() << indent << "CALCULATING FORCING TERM" << std::endl;
    printing->out() << indent << "Method: " << method << std::endl;
  }


  if (forcingTermMethod == Type1) {
    
    if (niter == 0) {
      
      eta_k = eta_initial;

    }
    else {

      // Return norm of predicted F

      // do NOT use the following lines!! This does NOT account for 
      // line search step length taken.
      // const double normpredf = 0.0;
      // oldsoln.getNormLastLinearSolveResidual(normpredf);
      
      // Create a new vector to be the predicted RHS
      if (Teuchos::is_null(predRhs)) {
	predRhs = oldsoln.getF().clone(ShapeCopy);
      }
      if (Teuchos::is_null(stepDir)) {
	stepDir = oldsoln.getF().clone(ShapeCopy);
      }
      
      // stepDir = X - oldX (i.e., the step times the direction)
      stepDir->update(1.0, soln.getX(), -1.0, oldsoln.getX(), 0);
      
      // Compute predRhs = Jacobian * step * dir
      if (!(oldsoln.isJacobian())) {
	if (printing->isPrintType(NOX::Utils::Details)) {
	  printing->out() << "WARNING: NOX::InexactNewtonUtils::resetForcingTerm() - "
	       << "Jacobian is out of date! Recomputing Jacobian." << std::endl;
	}
	const_cast<NOX::Abstract::Group&>(oldsoln).computeJacobian();
      }
      oldsoln.applyJacobian(*stepDir, *predRhs);

      // Compute predRhs = RHSVector + predRhs (this is the predicted RHS)
      predRhs->update(1.0, oldsoln.getF(), 1.0);
      
      // Compute the norms
      double normpredf = predRhs->norm();
      double normf = soln.getNormF();
      double normoldf = oldsoln.getNormF();

      if (printing->isPrintType(NOX::Utils::Details)) {
	printing->out() << indent << "Forcing Term Norm: Using L-2 Norm."
			<< std::endl;
      }

//.........这里部分代码省略.........
开发者ID:gitter-badger,项目名称:quinoa,代码行数:101,代码来源:NOX_Direction_Utils_InexactNewton.C


示例17: setGroupForComputeF

void MatrixFree::setGroupForComputeF(const NOX::Abstract::Group& group)
{
  useGroupForComputeF = true;
  groupPtr = group.clone();
  return;
}
开发者ID:00liujj,项目名称:trilinos,代码行数:6,代码来源:NOX_Epetra_MatrixFree.C


示例18: if

NOX::Abstract::Group::ReturnType
LOCA::Eigensolver::DGGEVStrategy::computeEigenvalues(
         NOX::Abstract::Group& group,
         Teuchos::RCP< std::vector<double> >& evals_r,
         Teuchos::RCP< std::vector<double> >& evals_i,
         Teuchos::RCP< NOX::Abstract::MultiVector >& evecs_r,
         Teuchos::RCP< NOX::Abstract::MultiVector >& evecs_i)
{

  // Get LAPACK group
  LOCA::LAPACK::Group* grp =
    dynamic_cast<LOCA::LAPACK::Group*>(&group);

  bool hasMassMatrix = true;

  if (globalData->locaUtils->isPrintType(NOX::Utils::StepperIteration)) {
    globalData->locaUtils->out()
      << std::endl << globalData->locaUtils->fill(64,'=') << std::endl
      << "LAPACK ";
    if (hasMassMatrix)
      globalData->locaUtils->out() << "DGGEV ";
    else
      globalData->locaUtils->out() << "DGEEV ";
    globalData->locaUtils->out() << "Eigensolver starting."
                 << std::endl << std::endl;;
  }

  // Make sure Jacobian & mass matrices are fresh
  grp->computeJacobian();
  if (hasMassMatrix)
    grp->computeShiftedMatrix(0.0, 1.0);

  // Get data out of group
  NOX::LAPACK::Matrix<double>& jacobianMatrix = grp->getJacobianMatrix();
  NOX::LAPACK::Matrix<double>& massMatrix = grp->getShiftedMatrix();

  // Size of matrix
  int n = jacobianMatrix.numRows();
  int lda = jacobianMatrix.numRows();
  int ldb = massMatrix.numRows();

  // Space to hold right eigenvectors
  double *vr = new double[n*n];

  // Space to hold real and imaginary eigenvalues
  double *alphar = new double[n];
  double *alphai = new double[n];
  double *beta = new double[n];

  // Size of work array, set to -1 to do a workspace query
  int lwork = -1;

  // Initial work "array"
  double work0;

  // Actual work array
  double *work;

  // Return code
  int info;

  // Copy Jacobian matrix since lapack routines overwrite it
  NOX::LAPACK::Matrix<double> J(jacobianMatrix);

  NOX::LAPACK::Matrix<double> M;

  // First do a workspace query
  if (hasMassMatrix) {

    // Copy mass matrix since lapack routines overwrite it
    M = massMatrix;

    DGGEV_F77("N", "V", &n, &J(0,0), &lda, &M(0,0), &ldb, alphar, alphai, beta,
          vr, &n, vr, &n, &work0, &lwork, &info);
  }
  else {
    DGEEV_F77("N", "V", &n, &J(0,0), &lda, alphar, alphai,
          vr, &n, vr, &n, &work0, &lwork, &info);
  }

  // Allocate work array
  lwork = (int) work0;
  work = new double[lwork];

  // Calculate eigenvalues, eigenvectors
  if (hasMassMatrix) {
    DGGEV_F77("N", "V", &n, &J(0,0), &lda, &M(0,0), &ldb, alphar, alphai, beta,
          vr, &n, vr, &n, work, &lwork, &info);
  }
  else {
    DGEEV_F77("N", "V", &n, &J(0,0), &lda, alphar, alphai,
          vr, &n, vr, &n, work, &lwork, &info);
  }

  // Check for success
  if (info != 0)
    return NOX::Abstract::Group::Failed;

  // Compute all of the eigenvalues and eigenvectors before sorting
  std::vector<double> evals_r_tmp(n);
//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,代码来源:LOCA_Eigensolver_DGGEVStrategy.C


示例19: throwError

bool NOX::Direction::Broyden::compute(NOX::Abstract::Vector& dir, 
				      NOX::Abstract::Group& soln, 
				      const NOX::Solver::LineSearchBased& solver)
{
  // Return value for group operations (temp variable)
  NOX::Abstract::Group::ReturnType status;
  
  // Compute F at current solution
  status = soln.computeF();
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to compute F");

  // Check for restart
  if (doRestart(soln, solver))
  {
    // Reset memory
    memory.reset();

    // Update group
    if (Teuchos::is_null(oldJacobianGrpPtr))
      oldJacobianGrpPtr = soln.clone(NOX::DeepCopy);
    else
      // RPP - update the entire group (this grabs state vectors in xyce).
      // Otherwise, xyce is forced to recalculate F at each iteration.
      //oldJacobianGrpPtr->setX(soln.getX());
      *oldJacobianGrpPtr = soln;

    // Calcuate new Jacobian
    if (utils->isPrintType(NOX::Utils::Details))
      utils->out() << "       Recomputing Jacobian" << endl;
 
    status = oldJacobianGrpPtr->computeJacobian();
    if (status != NOX::Abstract::Group::Ok) 
      throwError("compute", "Unable to compute Jacobian");

    // Reset counter
    cnt = 0;
  }

  // If necesary, scale the s-vector from the last iteration
  if (!memory.empty()) 
  {
    double step = solver.getStepSize();
    memory[memory.size() - 1].setStep(step);
  }

  // --- Calculate the Broyden direction ---

  // Compute inexact forcing term if requested.
  inexactNewtonUtils.computeForcingTerm(soln, 
					solver.getPreviousSolutionGroup(),
					solver.getNumIterations(),
					solver);

  // dir = - J_old^{-1} * F
  cnt ++;
  status = oldJacobianGrpPtr->applyJacobianInverse(*lsParamsPtr, 
						   soln.getF(), 
						   dir);
  if (status != NOX::Abstract::Group::Ok) 
    throwError("compute", "Unable to apply Jacobian inverse");
  dir.scale(-1.0);

  // Apply the Broyden modifications to the old Jacobian (implicitly)
  if (!memory.empty()) 
  {
    // Number of elements in the memory
    int m = memory.size();

    // Information corresponding to index i
    double step;
    Teuchos::RCP<const NOX::Abstract::Vector> sPtr;

    // Information corresponding to index i + 1 
    // (initialized for i = -1)
    double stepNext = memory[0].step();
    Teuchos::RCP<const NOX::Abstract::Vector> sPtrNext = 
      memory[0].sPtr();

    // Intermediate storage
    double a, b, c, denom;

    for (int i = 0; i < m-1; i ++)
    {
      step = stepNext;
      sPtr = sPtrNext;
      stepNext = memory[i+1].step();
      sPtrNext = memory[i+1].sPtr();

      a = step / stepNext;
      b = step - 1;
      c = sPtr->innerProduct(dir) / memory[i].sNormSqr();

      dir.update(a * c, *sPtrNext, b * c, *sPtr, 1.0);
    }

    step = stepNext;
    sPtr = sPtrNext;

    a = sPtr->innerProduct(dir);		// <s,z>
//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,代码来源:NOX_Direction_Broyden.C



注:本文中的nox::abstract::Group类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C++ abstract::MultiVector类代码示例发布时间:2022-05-31
下一篇:
C++ notification::Ptr类代码示例发布时间:2022-05-31
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap