在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
本文:https://chai2010.cn/advanced-go-programming-book/ch6-cloud/ch6-02-lock.html 在单机程序并发或并行修改全局变量时,需要对修改行为加锁以创造临界区。为什么需要加锁呢?我们看看在不加锁的情况下并发计数会发生什么情况: package main import ( "sync" ) // 全局变量 var counter int func main() { var wg sync.WaitGroup for i := 0; i < 1000; i++ { wg.Add(1) go func() { defer wg.Done() counter++ }() } wg.Wait() println(counter) } 多次运行会得到不同的结果: ❯❯❯ go run local_lock.go 945 ❯❯❯ go run local_lock.go 937 ❯❯❯ go run local_lock.go 959
进程内加锁想要得到正确的结果的话,要把对计数器(counter)的操作代码部分加上锁: // ... 省略之前部分 var wg sync.WaitGroup var l sync.Mutex for i := 0; i < 1000; i++ { wg.Add(1) go func() { defer wg.Done() l.Lock() counter++ l.Unlock() }() } wg.Wait() println(counter) // ... 省略之后部分 这样就可以稳定地得到计算结果了: ❯❯❯ go run local_lock.go 1000
trylock在某些场景,我们只是希望一个任务有单一的执行者。而不像计数器场景一样,所有goroutine都执行成功。后来的goroutine在抢锁失败后,需要放弃其流程。这时候就需要trylock了。 trylock顾名思义,尝试加锁,加锁成功执行后续流程,如果加锁失败的话也不会阻塞,而会直接返回加锁的结果。在Go语言中我们可以用大小为1的Channel来模拟trylock: package main import ( "sync" ) // Lock try lock type Lock struct { c chan struct{} } // NewLock generate a try lock func NewLock() Lock { var l Lock l.c = make(chan struct{}, 1) l.c <- struct{}{} return l } // Lock try lock, return lock result func (l Lock) Lock() bool { lockResult := false select { case <-l.c: lockResult = true default: } return lockResult } // Unlock , Unlock the try lock func (l Lock) Unlock() { l.c <- struct{}{} } var counter int func main() { var l = NewLock() var wg sync.WaitGroup for i := 0; i < 10; i++ { wg.Add(1) go func() { defer wg.Done() if !l.Lock() { // log error println("lock failed") return } counter++ println("current counter", counter) l.Unlock() }() } wg.Wait() } 因为我们的逻辑限定每个goroutine只有成功执行了 在单机系统中,trylock并不是一个好选择。因为大量的goroutine抢锁可能会导致CPU无意义的资源浪费。有一个专有名词用来描述这种抢锁的场景:活锁。 活锁指的是程序看起来在正常执行,但CPU周期被浪费在抢锁,而非执行任务上,从而程序整体的执行效率低下。活锁的问题定位起来要麻烦很多。所以在单机场景下,不建议使用这种锁。 基于Redis的setnx在分布式场景下,我们也需要这种“抢占”的逻辑,这时候怎么办呢?我们可以使用Redis提供的 package main import ( "fmt" "sync" "time" "github.com/go-redis/redis" ) func incr() { client := redis.NewClient(&redis.Options{ Addr: "localhost:6379", Password: "", // no password set DB: 0, // use default DB }) var lockKey = "counter_lock" var counterKey = "counter" // lock resp := client.SetNX(lockKey, 1, time.Second*5) lockSuccess, err := resp.Result() if err != nil || !lockSuccess { fmt.Println(err, "lock result: ", lockSuccess) return } // counter ++ getResp := client.Get(counterKey) cntValue, err := getResp.Int64() if err == nil || err == redis.Nil { cntValue++ resp := client.Set(counterKey, cntValue, 0) _, err := resp.Result() if err != nil { // log err println("set value error!") } } println("current counter is ", cntValue) delResp := client.Del(lockKey) unlockSuccess, err := delResp.Result() if err == nil && unlockSuccess > 0 { println("unlock success!") } else { println("unlock failed", err) } } func main() { var wg sync.WaitGroup for i := 0; i < 10; i++ { wg.Add(1) go func() { defer wg.Done() incr() }() } wg.Wait() } 看看运行结果: ❯❯❯ go run redis_setnx.go <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false <nil> lock result: false current counter is 2028 unlock success!
通过代码和执行结果可以看到,我们远程调用
所以,我们需要依赖于这些请求到达Redis节点的顺序来做正确的抢锁操作。如果用户的网络环境比较差,那也只能自求多福了。 基于ZooKeeperpackage main import ( "time" "github.com/samuel/go-zookeeper/zk" ) func main() { c, _, err := zk.Connect([]string{"127.0.0.1"}, time.Second) //*10) if err != nil { panic(err) } l := zk.NewLock(c, "/lock", zk.WorldACL(zk.PermAll)) err = l.Lock() if err != nil { panic(err) } println("lock succ, do your business logic") time.Sleep(time.Second * 10) // do some thing l.Unlock() println("unlock succ, finish business logic") } 基于ZooKeeper的锁与基于Redis的锁的不同之处在于Lock成功之前会一直阻塞,这与我们单机场景中的 其原理也是基于临时Sequence节点和watch API,例如我们这里使用的是 这种分布式的阻塞锁比较适合分布式任务调度场景,但不适合高频次持锁时间短的抢锁场景。按照Google的Chubby论文里的阐述,基于强一致协议的锁适用于 基于etcdetcd是分布式系统中,功能上与ZooKeeper类似的组件,这两年越来越火了。上面基于ZooKeeper我们实现了分布式阻塞锁,基于etcd,也可以实现类似的功能: package main import ( "log" "github.com/zieckey/etcdsync" ) func main() { m, err := etcdsync.New("/lock", 10, []string{"http://127.0.0.1:2379"}) if m == nil || err != nil { log.Printf("etcdsync.New failed") return } err = m.Lock() if err != nil { log.Printf("etcdsync.Lock failed") return } log.Printf("etcdsync.Lock OK") log.Printf("Get the lock. Do something here.") err = m.Unlock() if err != nil { log.Printf("etcdsync.Unlock failed") } else { log.Printf("etcdsync.Unlock OK") } } etcd中没有像ZooKeeper那样的Sequence节点。所以其锁实现和基于ZooKeeper实现的有所不同。在上述示例代码中使用的etcdsync的Lock流程是:
值得一提的是,在etcdv3的API中官方已经提供了可以直接使用的锁API,读者可以查阅etcd的文档做进一步的学习。 如何选择合适的锁业务还在单机就可以搞定的量级时,那么按照需求使用任意的单机锁方案就可以。 如果发展到了分布式服务阶段,但业务规模不大,qps很小的情况下,使用哪种锁方案都差不多。如果公司内已有可以使用的ZooKeeper、etcd或者Redis集群,那么就尽量在不引入新的技术栈的情况下满足业务需求。 业务发展到一定量级的话,就需要从多方面来考虑了。首先是你的锁是否在任何恶劣的条件下都不允许数据丢失,如果不允许,那么就不要使用Redis的 对锁数据的可靠性要求极高的话,那只能使用etcd或者ZooKeeper这种通过一致性协议保证数据可靠性的锁方案。但可靠的背面往往都是较低的吞吐量和较高的延迟。需要根据业务的量级对其进行压力测试,以确保分布式锁所使用的etcd或ZooKeeper集群可以承受得住实际的业务请求压力。需要注意的是,etcd和Zookeeper集群是没有办法通过增加节点来提高其性能的。要对其进行横向扩展,只能增加搭建多个集群来支持更多的请求。这会进一步提高对运维和监控的要求。多个集群可能需要引入proxy,没有proxy那就需要业务去根据某个业务id来做分片。如果业务已经上线的情况下做扩展,还要考虑数据的动态迁移。这些都不是容易的事情。 在选择具体的方案时,还是需要多加思考,对风险早做预估。 |
请发表评论