在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
Redis可以缓存数据,这使得操作数据可以达到一个较快的速度,在一些需要数据较快存储的场合,例如微博,redis发挥着不可替代的作用。在redis的官网,golang驱动有几个,忽然来了兴致,那个才是redis最佳的Go语言驱动? 这些驱动都处于开发的前期,还没有发行正式版,有些已经很久没更新了。从更新日期来看,Gary Burd的radigo和gosexy的redis最近有更新,而且从他们的README文件来看,他们对redis的支持还不错。很有可能,他们两者会有1个胜出。但到底谁才是最佳的,这个现在还是不能判断。在gosexy的redis源码库中的有个_benchmarks文件,里面就是一些对各个redis的Go驱动的一些简单的性能测试。简单看了一下,里面的代码就是调用他们各自包中的函数来达到测试的功能。大家不妨看一下。这里就通过这个测试,来简单判断一下谁是最佳。 首先,安装各个Go的驱动: go get github.com/alphazero/Go-Redis go get github.com/simonz05/godis go get github.com/garyburd/redigo go get github.com/gosexy/redis go get cgl.tideland.biz/redis 注意:tcgl原先托管在google,不过现在它现在自己组建源码库了,gosexy的redis的_benchmarks的tcgl_redis_test.go就import了google的版本,不过现在要修改了。也就是注释掉code.google.com/p/tcgl/redis,添加 cgl.tideland.biz/redis,这样我们才能进行下一步动作。 在一个终端打开redis: redis-server 我们要进入_benchmarks这个文件夹,里面的README.md有进行性能测试的步骤,这里要进行的性能测试的操作有Ping, Set, Get, Incr, LPush, LRange10, LRange100, 其中LRange10和 LRange100都是调用LRange操作,不过他们的数量不同而已。以下是我在这些文件夹里面进行的操作。 新开一个终端: go test -test.bench='.*' > redis-go-driver-benchmark.txt ./grep_data.sh grep_data是我写的一个脚本: #!/bin/sh for i in AlphazeroRedis GaryburdRedigo GosexyRedis Simonz05Godis TcglRedis do grep $i redis-go-driver-benchmark.txt | awk '{print $3}' > $i done 这个脚本的作用就是将AlphazeroRedis、GaryburdRedigo、GosexyRedis、Simonz05Godis、TcglRedis等的测试数据从redis-go-driver-benchmark.txt提取出来,也就是他们各自操作的数据,然后写入以他们名字命名的文件里面。我们可以打开AlphazeroRedis看一下, 39001 43967 43459 43350 44249 58078 139603 这些数据依次对应Ping, Set, Get, Incr, LPush, LRange10, LRange100的每次操作所需要的纳秒时间。我写了一个R的小程序来把这些数据显示到一个图上面,对R不是很熟悉,希望了解R的大牛指正。下面上代码: png(filename="redis的最佳go语言驱动--使用格通测试的数据.png",width=1400, height=900) Sys.setlocale(, "zh_CN.UTF-8") oldpar <- par(lwd=4) AlphazeroRedis <- read.table("AlphazeroRedis") GaryburdRedigo <- read.table("GaryburdRedigo") GosexyRedis <- read.table("GosexyRedis") Simonz05Godis <- read.table("Simonz05Godis") TcglRedis <- read.table("TcglRedis") plot(AlphazeroRedis$V1, type="o", ylim = c(0, 360000), col = "black", axes=FALSE, ann=FALSE) text(2, AlphazeroRedis$V1[2], cex=2, pos=3, col="black", "AlphazeroRedis") axis(1, at=1:8, lab=c("Ping","Set","Get","Incr", "LPush", "LRange10", "LRange100", "")) axis(2, las=0, at=40000*0: 360000) box() title(xlab="操作", col = "black") title(ylab="每个操作多少纳秒", col = "black") title(main = "5个Redis的Go语言驱动操作比较--使用格通测试的数据") lines(GaryburdRedigo, col = "red") text(6, GaryburdRedigo$V1[6]-10000, cex=2, pos=1, col="red", "GaryburdRedigo") lines(GosexyRedis, col = "blue") text(2, GosexyRedis$V1[2], pos=1,col="blue", cex=2, "GosexyRedis") lines(Simonz05Godis, col = "yellow") text(4, Simonz05Godis$V1[4]+7000,pos=3, col="yellow",cex=2, "Simonz05Godis") lines(TcglRedis, col = "gray") text(3, TcglRedis$V1[3],pos=1,cex=2, col="gray", "TcglRedis") par(oldpar) dev.off() 保存为go-redis-getongs-data.R,用R来调用这个文件: $R >source("go-redis-getongs-data.R") 在目录下面会生成一个叫”redis的最佳go语言驱动--使用格通测试的数据.png“的文件,我特意把图给放大,以便能够清楚看到线条的走向,图有点大,可能在这里显示不正确: 在_benchmarks的README.md有gosexy测试的数据,我修改了上面的go-redis-getongs-data.R文件,把gosexy测试的数据整理到图上去: 2副图可以看出,tcgl无疑是5个中耗时最多的。在我测试的数据中,GosexyRedis几乎赢得了所有的测试(除了LRange100输给了GaryburdRedigo),GaryburdRedigo基本上是排老二。而使用gosexy的数据,除了tcgl,其他4个的数据相差不大,而GaryburdRedigo还是赢得了LRange100测试,说明在数量比较大的list方面,GaryburdRedigo是十分有优势的。 从上面的数据可以知道,set, get, incr,lpush的操作耗时都在40微秒左右,那就是1s里面能够操作25000次左右。我自己算了一下,吓了一跳, 好像比其他使用案例高了一个数量级(有错希望指正了)。 上面的测试只涉及部分的redis操作,在整体对redis的支持方面,还是需要继续添加其他功能测试。毕竟现在Go才开始发展,还需要继续添砖加瓦。各位看完后也可以自己动手测试一下。 转贴请注明来自:格通 |
请发表评论