Introduction 介绍
This document demonstrates the development of a simple Go package and introduces the go tool, the standard way to fetch, build, and install Go packages and commands.
The go tool requires you to organize your code in a specific way. Please read this document carefully. It explains the simplest way to get up and running with your Go installation.
A similar explanation is available as a screencast.
本文档说明了一个简单的go包和go工具的接口,获取、生成的标准方法,安装go包和命令行。go工具需要你用特殊的方式组织你的代码,请认真阅读这份文档。它解释了用最简单的方式来获取和运行你安装的go。
Code organization 组织代码
Overview 概述
- Go programmers typically keep all their Go code in a single workspace. go语言项目通常保存在一个单独的工作区中。
- A workspace contains many version control repositories (managed by Git, for example). 工作区包含许多版本控制存储库 (例如, 由 Git 管理)。
- Each repository contains one or more packages. 每个存储库都包含一个或者更多的包。
- Each package consists of one or more Go source files in a single directory.每个包由一个或者多个go语言源码文件在单独的文件夹中组成。
- The path to a package's directory determines its import path. 包目录的路径决定了它的导入路径。
Note that this differs from other programming environments in which every project has a separate workspace and workspaces are closely tied to version control repositories. 请注意, 这与其他编程环境不同, 其中每个项目都有一个单独的工作区, 工作区与版本控制存储库紧密相连。
Workspaces 工作区
A workspace is a directory hierarchy with two directories at its root: 工作区是目录层次结构, 其根目录有两个:
-
src contains Go source files, and src包含go源码文件
-
bin contains executable commands. bin包含可执行命令
The go tool builds and installs binaries to the bin directory. bin文件夹是go工具构建和安装二进制文件的地方。
The src subdirectory typically contains multiple version control repositories (such as for Git or Mercurial) that track the development of one or more source packages. src的子目录通常包含用于跟踪一个或多个源包开发的多个版本控制存储库 (如 Git 或 Mercurial)。
To give you an idea of how a workspace looks in practice, here's an example: 为了让您了解工作区在实践中的外观, 下面是一个示例:
bin/
hello # command executable
outyet # command executable
src/
github.com/golang/example/
.git/ # Git repository metadata
hello/
hello.go # command source
outyet/
main.go # command source
main_test.go # test source
stringutil/
reverse.go # package source
reverse_test.go # test source
golang.org/x/image/
.git/ # Git repository metadata
bmp/
reader.go # package source
writer.go # package source
... (many more repositories and packages omitted) ...
The tree above shows a workspace containing two repositories (example and image ). The example repository contains two commands (hello and outyet ) and one library (stringutil ). The image repository contains the bmp package and several others.
A typical workspace contains many source repositories containing many packages and commands. Most Go programmers keep all their Go source code and dependencies in a single workspace.
Note that symbolic links should not be used to link files or directories into your workspace.
Commands and libraries are built from different kinds of source packages. We will discuss the distinction later.
The GOPATH environment variable GOPATH环境变量
The GOPATH environment variable specifies the location of your workspace. It defaults to a directory named go inside your home directory, so $HOME/go on Unix, $home/go on Plan 9, and %USERPROFILE%\go (usually C:\Users\YourName\go ) on Windows.
If you would like to work in a different location, you will need to set GOPATH to the path to that directory. (Another common setup is to set GOPATH=$HOME .) Note that GOPATH must not be the same path as your Go installation.
The command go env GOPATH prints the effective current GOPATH ; it prints the default location if the environment variable is unset.
For convenience, add the workspace's bin subdirectory to your PATH :
$ export PATH=$PATH:$(go env GOPATH)/bin
The scripts in the rest of this document use $GOPATH instead of $(go env GOPATH) for brevity. To make the scripts run as written if you have not set GOPATH, you can substitute $HOME/go in those commands or else run:
$ export GOPATH=$(go env GOPATH)
To learn more about the GOPATH environment variable, see 'go help gopath' .
To use a custom workspace location, set the GOPATH environment variable.
Import paths 导入包
An import path is a string that uniquely identifies a package. A package's import path corresponds to its location inside a workspace or in a remote repository (explained below).
The packages from the standard library are given short import paths such as "fmt" and "net/http" . For your own packages, you must choose a base path that is unlikely to collide with future additions to the standard library or other external libraries.
If you keep your code in a source repository somewhere, then you should use the root of that source repository as your base path. For instance, if you have a GitHub account at github.com/user , that should be your base path.
Note that you don't need to publish your code to a remote repository before you can build it. It's just a good habit to organize your code as if you will publish it someday. In practice you can choose any arbitrary path name, as long as it is unique to the standard library and greater Go ecosystem.
We'll use github.com/user as our base path. Create a directory inside your workspace in which to keep source code:
$ mkdir -p $GOPATH/src/github.com/user
Your first program 你的第一个程序
To compile and run a simple program, first choose a package path (we'll use github.com/user/hello ) and create a corresponding package directory inside your workspace:
$ mkdir $GOPATH/src/github.com/user/hello
Next, create a file named hello.go inside that directory, containing the following Go code.
package main
import "fmt"
func main() {
fmt.Println("Hello, world.")
}
Now you can build and install that program with the go tool:
$ go install github.com/user/hello
Note that you can run this command from anywhere on your system. The go tool finds the source code by looking for the github.com/user/hello package inside the workspace specified by GOPATH .
You can also omit the package path if you run go install from the package directory:
$ cd $GOPATH/src/github.com/user/hello
$ go install
This command builds the hello command, producing an executable binary. It then installs that binary to the workspace's bin directory as hello (or, under Windows, hello.exe ). In our example, that will be $GOPATH/bin/hello , which is $HOME/go/bin/hello .
The go tool will only print output when an error occurs, so if these commands produce no output they have executed successfully.
You can now run the program by typing its full path at the command line:
$ $GOPATH/bin/hello
Hello, world.
Or, as you have added $GOPATH/bin to your PATH , just type the binary name:
$ hello
Hello, world.
If you're using a source control system, now would be a good time to initialize a repository, add the files, and commit your first change. Again, this step is optional: you do not need to use source control to write Go code.
$ cd $GOPATH/src/github.com/user/hello
$ git init
Initialized empty Git repository in /home/user/work/src/github.com/user/hello/.git/
$ git add hello.go
$ git commit -m "initial commit"
[master (root-commit) 0b4507d] initial commit
1 file changed, 1 insertion(+)
create mode 100644 hello.go
Pushing the code to a remote repository is left as an exercise for the reader.
Your first library 你的第一个库
Let's write a library and use it from the hello program.
Again, the first step is to choose a package path (we'll use github.com/user/stringutil ) and create the package directory:
$ mkdir $GOPATH/src/github.com/user/stringutil
Next, create a file named reverse.go in that directory with the following contents.
// Package stringutil contains utility functions for working with strings.
package stringutil
// Reverse returns its argument string reversed rune-wise left to right.
func Reverse(s string) string {
r := []rune(s)
for i, j := 0, len(r)-1; i < len(r)/2; i, j = i+1, j-1 {
r[i], r[j] = r[j], r[i]
}
return string(r)
}
Now, test that the package compiles with go build :
$ go build github.com/user/stringutil
Or, if you are working in the package's source directory, just:
$ go build
This won't produce an output file. Instead it saves the compiled package in the local build cache.
After confirming that the stringutil package builds, modify your original hello.go (which is in$GOPATH/src/github.com/user/hello ) to use it:
package main
import (
"fmt"
"github.com/user/stringutil"
)
func main() {
fmt.Println(stringutil.Reverse("!oG ,olleH"))
}
Install the hello program:
$ go install github.com/user/hello
Running the new version of the program, you should see a new, reversed message:
$ hello
Hello, Go!
After the steps above, your workspace should look like this:
bin/
hello # command executable
src/
github.com/user/
hello/
hello.go # command source
stringutil/
reverse.go # package source
Package names 包名
The first statement in a Go source file must be
package name
where name is the package's default name for imports. (All files in a package must use the same name .)
Go's convention is that the package name is the last element of the import path: the package imported as "crypto/rot13 " should be named rot13 .
Executable commands must always use package main .
There is no requirement that package names be unique across all packages linked into a single binary, only that the import paths (their full file names) be unique.
See Effective Go to learn more about Go's naming conventions.
Testing 测试
Go has a lightweight test framework composed of the go test command and the testing package.
You write a test by creating a file with a name ending in _test.go that contains functions named TestXXX with signature func (t *testing.T) . The test framework runs each such function; if the function calls a failure function such as t.Error or t.Fail , the test is considered to have failed.
Add a test to the stringutil package by creating the file$GOPATH/src/github.com/user/stringutil/reverse_test.go containing the following Go code.
package stringutil
import "testing"
func TestReverse(t *testing.T) {
cases := []struct {
in, want string
}{
{"Hello, world", "dlrow ,olleH"},
{"Hello, 世界", "界世 ,olleH"},
{"", ""},
}
for _, c := range cases {
got := Reverse(c.in)
if got != c.want {
t.Errorf("Reverse(%q) == %q, want %q", c.in, got, c.want)
}
}
}
Then run the test with go test :
$ go test github.com/user/stringutil
ok github.com/user/stringutil 0.165s
As always, if you are running the go tool from the package directory, you can omit the package path:
$ go test
ok github.com/user/stringutil 0.165s
Run go help test and see the testing package documentation for more detail.
Remote packages 远程包
An import path can describe how to obtain the package source code using a revision control system such as Git or Mercurial. The go tool uses this property to automatically fetch packages from remote repositories. For instance, the examples described in this document are also kept in a Git repository hosted at GitHubgithub.com/golang/example . If you include the repository URL in the package's import path, go get will fetch, build, and install it automatically:
$ go get github.com/golang/example/hello
$ $GOPATH/bin/hello
Hello, Go examples!
If the specified package is not present in a workspace, go get will place it inside the first workspace specified by GOPATH . (If the package does already exist, go get skips the remote fetch and behaves the same as go install .)
After issuing the above go get command, the workspace directory tree should now look like this:
bin/
hello # command executable
src/
github.com/golang/example/
.git/ # Git repository metadata
hello/
hello.go # command source
stringutil/
reverse.go # package source
reverse_test.go # test source
github.com/user/
hello/
hello.go # command source
stringutil/
reverse.go # package source
reverse_test.go # test source
The hello command hosted at GitHub depends on the stringutil package within the same repository. The imports in hello.go file use the same import path convention, so the go get command is able to locate and install the dependent package, too.
import "github.com/golang/example/stringutil"
This convention is the easiest way to make your Go packages available for others to use. The Go Wiki and godoc.org provide lists of external Go projects.
For more information on using remote repositories with the go tool, see go help importpath .
What's next 下一个
Subscribe to the golang-announce mailing list to be notified when a new stable version of Go is released.
See Effective Go for tips on writing clear, idiomatic Go code.
Take A Tour of Go to learn the language proper.
Visit the documentation page for a set of in-depth articles about the Go language and its libraries and tools.
Getting help 获得帮助
For real-time help, ask the helpful gophers in #go-nuts on the Freenode IRC server.
The official mailing list for discussion of the Go language is Go Nuts.
Report bugs using the Go issue tracker.
|
请发表评论