• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C#—泛型_推迟一切可以推迟的东西

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 

泛型(generic)是C#语言2.0和通用语言运行时(CLR)的一个新特性。泛型为.NET框架引入了类型参数(type parameters)的概念。类型参数使得设计类和方法时,不必确定一个或多个具体参数,其的具体参数可延迟到客户代码中声明、实现。这意味着使用泛型的类型参数T,写一个类MyList<T>,客户代码可以这样调用:MyList<int>MyList<string>MyList<MyClass>。这避免了运行时类型转换或装箱操作的代价和风险。

泛型是利用延迟加载思想,延迟声明,不是语法糖

泛型方法性能==普通方法>Object方法(需要装箱拆箱)

即时编译器,中间语言IL转成JIT(机器码) 生成一个占位符`1,MetaData

目录

C# 中的泛型. 1

 一、泛型概述. 2

 二、泛型的优点. 5

 三、泛型类型参数. 7

 四、类型参数的约束. 8

 五、泛型类. 11

 六、泛型接口. 13

 七、泛型方法. 19

 八、泛型委托. 21

 九、泛型代码中的default 关键字. 23

 十、C++ 模板和C# 泛型的区别. 24

 十一 、运行时中的泛型. 25

 十二 、基础类库中的泛型. 27

一、泛型概述

    泛型类和泛型方法兼复用性、类型安全和高效率于一身,是与之对应的非泛型的类和方法所不及。泛型广泛用于容器(collections)和对容器操作的方法中。.NET框架2.0的类库提供一个新的命名空间System.Collections.Generic,其中包含了一些新的基于泛型的容器类。要查找新的泛型容器类(collection classes)的示例代码,请参见基础类库中的泛型。当然,你也可以创建自己的泛型类和方法,以提供你自己的泛化的方案和设计模式,这是类型安全且高效的。下面的示例代码以一个简单的泛型链表类作为示范。(多数情况下,推荐使用由.NET框架类库提供的List<T>类,而不是创建自己的表。)类型参数T在多处使用,具体类型通常在这些地方来指明表中元素的类型。类型参数T有以下几种用法:

l        AddHead方法中,作为方法参数的类型。

l        在公共方法GetNext中,以及嵌套类NodeData属性中作为返回值的类型。

l        在嵌套类中,作为私有成员data的类型。

注意一点,T对嵌套的类Node也是有效的。当用一个具体类来实现MyList<T>——MyList<int>——每个出现过的T都要用int代替。

using System;
using System.Collections.Generic;
 
public class MyList<T> //角括号中的类型参数
    {
        private Node head;
// 嵌套类型也是一般的T
        private class Node          
        {
            private Node next;
//T 作为私有成员数据类型:
            private T data;         
//T 非泛型构造函数中:
            public Node(T t)        
            {
                next = null;
                data = t;
            }
            public Node Next
            {
                get { return next; }
                set { next = value; }
            }
//T 作为返回类型的属性:
            public T Data           
            {
                get { return data; }
                set { data = value; }
            }
        }
        public MyList()
        {
            head = null;
        }
//T 作为方法参数类型:
        public void AddHead(T t)    
        {
            Node n = new Node(t);
            n.Next = head;
            head = n;
        }
 
        public IEnumerator<T> GetEnumerator()
        {
            Node current = head;
 
            while (current != null)
            {
                yield return current.Data;
                current = current.Next;
            }
        }
    }
 

下面的示例代码演示了客户代码如何使用泛型类MyList<T>,来创建一个整数表。通过简单地改变参数的类型,很容易改写下面的代码,以创建字符串或其他自定义类型的表。

class Program
    {
        static void Main(string[] args)
        {
//int是类型参数。
           MyList<int> list = new MyList<int>();
            for (int x = 0; x < 10; x++)
                list.AddHead(x);
 
            foreach (int i in list)
            {
                Console.WriteLine(i);
            }
            Console.WriteLine("Done");
        }
    } 

二、泛型的优点

针对早期版本的通用语言运行时和C#语言的局限,泛型提供了一个解决方案。以前类型的泛化(generalization)是靠类型与全局基类System.Object的相互转换来实现。.NET框架基础类库的ArrayList容器类,就是这种局限的一个例子。ArrayList是一个很方便的容器类,使用中无需更改就可以存储任何引用类型或值类型。

 

//这是 .NET Framework 1.1 创建列表方式
ArrayList list1 = new ArrayList(); 
list1.Add(3);
list1.Add(105);
//...
ArrayList list2 = new ArrayList();
list2.Add(“It is raining in Redmond.”);
list2.Add("It is snowing in the mountains.");
//...

 

但是这种便利是有代价的,这需要把任何一个加入ArrayList的引用类型或值类型都隐式地向上转换成System.Object。如果这些元素是值类型,那么当加入到列表中时,它们必须被装箱;当重新取回它们时,要拆箱。类型转换和装箱、拆箱的操作都降低了性能;在必须迭代(iterate)大容器的情况下,装箱和拆箱的影响可能十分显著。

另一个局限是缺乏编译时的类型检查,当一个ArrayList把任何类型都转换为Object,就无法在编译时预防客户代码类似这样的操作:

ArrayList list = new ArrayList(); 
//Okay.  
list.Add(3); 
//Okay, but did you really want to do this?
list.Add(.“It is raining in Redmond.”);
 
int t = 0;
//This causes an InvalidCastException to be returned.
    foreach(int x in list)
{
  t += x;
}

虽然这样完全合法,并且有时是有意这样创建一个包含不同类型元素的容器,但是把stringint变量放在一个ArrayList中,几乎是在制造错误,而这个错误直到运行的时候才会被发现。

1.0版和1.1版的C#语言中,你只有通过编写自己的特定类型容器,才能避免.NET框架类库的容器类中泛化代码(generalized code)的危险。当然,因为这样的类无法被其他的数据类型复用,也就失去泛型的优点,你必须为每个需要存储的类型重写该类。

ArrayList和其他相似的类真正需要的是一种途径,能让客户代码在实例化之前指定所需的特定数据类型。这样就不需要向上类型转换为Object,而且编译器可以同时进行类型检查。换句话说,ArrayList需要一个类型参数。这正是泛型所提供的。在System.Collections.Generic命名空间中的泛型List<T>容器里,同样是把元素加入容器的操作,类似这样:

The .NET Framework 2.0 way of creating a list
List<int> list1 = new List<int>();
//No boxing, no casting:
list1.Add(3);
//Compile-time error:
list1.Add("It is raining in Redmond.");

ArrayList相比,在客户代码中唯一增加的List<T>语法是声明和实例化中的类型参数。代码略微复杂的回报是,你创建的表不仅比ArrayList更安全,而且明显地更加快速,尤其当表中的元素是值类型的时候。

三、泛型类型参数

    在泛型类型或泛型方法的定义中,类型参数是一个占位符(placeholder),通常为一个大写字母,如T。在客户代码声明、实例化该类型的变量时,把T替换为客户代码所指定的数据类型。泛型类,如泛型概述中给出的MyList<T>类,不能用作as-is,原因在于它不是一个真正的类型,而更像是一个类型的蓝图。要使用MyList<T>,客户代码必须在尖括号内指定一个类型参数,来声明并实例化一个已构造类型(constructed type)。这个特定类的类型参数可以是编译器识别的任何类型。可以创建任意数量的已构造类型实例,每个使用不同的类型参数,如下:

MyList<MyClass> list1  = new MyList<MyClass>();
MyList<float> list2 = new MyList<float>();
MyList<SomeStruct> list3 = new MyList<SomeStruct>();

 在这些MyList<T>的实例中,类中出现的每个T都将在运行的时候被类型参数所取代。依靠这样的替换,我们仅用定义类的代码,就创建了三个独立的类型安全且高效的对象。有关CLR执行替换的详细信息,请参见运行时中的泛型。

四、类型参数的约束

若要检查表中的一个元素,以确定它是否合法或是否可以与其他元素相比较,那么编译器必须保证:客户代码中可能出现的所有类型参数,都要支持所需调用的操作或方法。这种保证是通过在泛型类的定义中,应用一个或多个约束而得到的。一个约束类型是一种基类约束,它通知编译器,只有这个类型的对象或从这个类型派生的对象,可被用作类型参数。一旦编译器得到这样的保证,它就允许在泛型类中调用这个类型的方法。上下文关键字where用以实现约束。下面的示例代码说明了应用基类约束,为MyList<T>类增加功能。

public class Employee
{
 public class Employee
    {
        private string name;
        private int id;
        public Employee(string s, int i)
        {
            name = s;
            id = i;
        }
 
        public string Name
        {
            get { return name; }
            set { name = value; }
        }
        public int ID
        {
            get { return id; }
            set { id = value; }
        }
 
    }
}
class MyList<T> where T: Employee
{
 //Rest of class as before.
  public T FindFirstOccurrence(string s)
  {
   T t = null;
   Reset();
   while (HasItems())
   {
      if (current != null)
      {
//The constraint enables this:
         if (current.Data.Name == s)
         {
            t = current.Data;
            break;
         }
         else
         {
            current = current.Next;
         }
      } //end if
   } // end while
  return t;
  }
}

约束使得泛型类能够使用Employee.Name属性,因为所有为类型T的元素,都是一个Employee对象或是一个继承自Employee的对象。

同一个类型参数可应用多个约束。约束自身也可以是泛型类,如下:

 class MyList<T> where T: Employee, IEmployee,  IComparable<T>,  new() {…} 

下表列出了五类约束:

约束

描述

where T: struct

类型参数必须为值类型。

where T : class

类型参数必须为引用类型。

where T : new()

类型参数必须有一个公有、无参的构造函数。当于其它约束联合使用时,new()约束必须放在最后。

where T : <base class name>

类型参数必须是指定的基类型或是派生自指定的基类型。

where T : <interface name>

类型参数必须是指定的接口或是指定接口的实现。可以指定多个接口约束。接口约束也可以是泛型的。

类型参数的约束,增加了可调用的操作和方法的数量。这些操作和方法受约束类型及其派生层次中的类型的支持。因此,设计泛型类或方法时,如果对泛型成员执行任何赋值以外的操作,或者是调用System.Object中所没有的方法,就需要在类型参数上使用约束。 

无限制类型参数的一般用法

没有约束的类型参数,如公有类MyClass<T>{...}中的T, 被称为无限制类型参数(unbounded type parameters)。无限制类型参数有以下规则:

l        不能使用运算符 != == ,因为无法保证具体的类型参数能够支持这些运算符。

l        它们可以与System.Object相互转换,也可显式地转换成任何接口类型。

l        可以与null比较。如果一个无限制类型参数与null比较,当此类型参数为值类型时,比较的结果总为false

无类型约束

当约束是一个泛型类型参数时,它就叫无类型约束(Naked type constraints)。当一个有类型参数成员方法,要把它的参数约束为其所在类的类型参数时,无类型约束很有用。如下例所示:

class List<T>
{
      //...
    void Add<U>(List<U> items) where U:T {…}
}

在上面的示例中, Add方法的上下文中的T,就是一个无类型约束;而List类的上下文中的T,则是一个无限制类型参数。

无类型约束也可以用在泛型类的定义中。注意,无类型约束一定也要和其它类型参数一起在尖括号中声明:

//naked type constraint
public class MyClass<T,U,V> where T : V

因为编译器只认为无类型约束是从System.Object继承而来,所以带有无类型约束的泛型类的用途十分有限。当你希望强制两个类型参数具有继承关系时,可对泛型类使用无类型约束。

五、泛型类

泛型类封装了不针对任何特定数据类型的操作。泛型类常用于容器类,如链表、哈希表、栈、队列、树等等。这些类中的操作,如对容器添加、删除元素,不论所存储的数据是何种类型,都执行几乎同样的操作。

对大多数情况,推荐使用.NET框架2.0类库中所提供的容器类。有关使用这些类的详细信息,请参见基础类库中的泛型。

通常,从一个已有的具体类来创建泛型类,并每次把一个类型改为类型参数,直至达到一般性和可用性的最佳平衡。当创建你自己的泛型类时,需要重点考虑的事项有:

l        哪些类型应泛化为类型参数。一般的规律是,用参数表示的类型越多,代码的灵活性和复用性也就越大。过多的泛化会导致代码难以被其它的开发人员理解。

l        如果有约束,那么类型参数需要什么样约束。一个良好的习惯是,尽可能使用最大的约束,同时保证可以处理所有需要处理的类型。例如,如果你知道你的泛型类只打算使用引用类型,那么就应用这个类的约束。这样可以防止无意中使用值类型,同时可以对T使用as运算符,并且检查空引用。

l        把泛型行为放在基类中还是子类中。泛型类可以做基类。同样非泛型类的设计中也应考虑这一点。泛型基类的继承规则    

l        是否实现一个或多个泛型接口。例如,要设计一个在基于泛型的容器中创建元素的类,可能需要实现类似IComparable<T>的接口,其中T是该类的参数。

泛型概述中有一个简单泛型类的例子。

类型参数和约束的规则对于泛型类的行为(behavior)有一些潜在的影响,——尤其是对于继承和成员可访问性。在说明这个问题前,理解一些术语十分重要。对于一个泛型类Node<T>,客户代码既可以通过指定一个类型参数来创建一个封闭构造类型(Node<int>),也可以保留类型参数未指定,例如指定一个泛型基类来创建开放构造类型(Node<T>)。泛型类可以继承自具体类、封闭构造类型或开放构造类型:

// concrete type
class Node<T> : BaseNode
//closed constructed type
class Node<T> : BaseNode<int>
//open constructed type
class Node<T> : BaseNode<T>

非泛型的具体类可以继承自封闭构造基类,但不能继承自开放构造基类。这是因为客户代码无法提供基类所需的类型参数。

//No error.
class Node : BaseNode<int>
//Generates an error.
class Node : BaseNode<T>

泛型的具体类可以继承自开放构造类型。除了与子类共用的类型参数外,必须为所有的类型参数指定类型,如下代码所示:

//Generates an error.
class Node<T> : BaseNode<T, U> {…}
//Okay.
class Node<T> : BaseNode<T, int>{…}

继承自开放结构类型的泛型类,必须指定:

泛型类继承自开放构造类型必须指定必须指定约束,是一个超集,或暗示,对基类型约束:

class NodeItem<T> where T : IComparable<T>, new() {…}
class MyNodeItem<T> : NodeItem<T> where T : IComparable<T> , new(){…}

泛型类型可以使用多种类型参数和约束,如下:

class KeyType<K,V>{…}
class SuperKeyType<K,V,U> where U : IComparable<U>, where V : new(){…}

开放结构和封闭构造类型型可以用作方法的参数:

void Swap<T>(List<T> list1, List<T> list2){…}
void Swap(List<int> list1, List<int> list2){…}

六、泛型接口

不论是为泛型容器类,还是表示容器中元素的泛型类,定义接口是很有用的。把泛型接口与泛型类结合使用是更好的用法,比如用IComparable<T>而非IComparable,以避免值类型上的装箱和拆箱操作。.NET框架2.0类库定义了几个新的泛型接口,以配合System.Collections.Generic中新容器类的使用。

    当一个接口被指定为类型参数的约束时,只有实现该接口的类型可被用作类型参数。下面的示例代码显示了一个从MyList<T>派生的SortedList<T>类。更多信息,请参见泛型概述。SortedList<T>增加了约束where T : IComparable<T>

这使得SortedList<T>中的BubbleSort方法可以使用表中的元素的IComparable<T>.CompareTo方法。在这个例子中,表中的元素是简单类——实现IComparable<Person>Person类。

using System;
using System.Collections.Generic;
 
//Type parameter T in angle brackets.
public class MyList<T>
{
    protected Node head;
    protected Node current = null;
 
// Nested type is also generic on T
    protected class Node         
    {
        public Node next;
//T as private member datatype.
        private T data;         
//T used in non-generic constructor.
        public Node(T t)        
        {
            next = null;
            data = t;
        }
        public Node Next
        {
            get { return next; }
            set { next = value; }
        }
//T as return type of property.
        public T Data           
        {
            get { return data; }
            set { data = value; }
        }
    }
    public MyList()
    {
        head = null;
    }
//T as method parameter type.
    public void AddHead(T t)    
    {
        Node n = new Node(t);
        n.Next = head;
        head = n;   
    }
    // Implement IEnumerator<T> to enable foreach
    // iteration of our list. Note that in C# 2.0
    // you are not required to implment Current and
    // GetNext. The compiler does that for you.
    public IEnumerator<T> GetEnumerator()
    {
        Node current = head;
 
        while (current != null)
        {
            yield return current.Data;
            current = current.Next;
        }
    }
}
 
 
public class SortedList<T> : MyList<T> where T : IComparable<T>
{
    // A simple, unoptimized sort algorithm that
    // orders list elements from lowest to highest:
 
public void BubbleSort()
    {
 
        if (null == head || null == head.Next)
            return;
        bool swapped;
 
        do
        {
            Node previous = null;
            Node current = head;
            swapped = false;
 
            while (current.next != null)
            {
                //  Because we need to call this method, the SortedList
                //  class is constrained on IEnumerable<T>
                if (current.Data.CompareTo(current.next.Data) > 0)
                {
                    Node tmp = current.next;
                    current.next = current.next.next;
                    tmp.next = current;
 
                    if (previous == null)
                    {
                        head = tmp;
                    }
                    else
                    {
                        previous.next = tmp;
                    }
                    previous = tmp;
                    swapped = true;
                }
 
                else
                {
                    previous = current;
                    current = current.next;
                }
 
            }// end while
        } while (swapped);
    }
 
}
 
// A simple class that implements IComparable<T>
// using itself as the type argument. This is a
// common design pattern in objects that are
// stored in generic lists.
public class Person : IComparable<Person>
{
    string name;
    int age;
    public Person(string s, int i)
    {
        name = s;
        age = i;
    }
    // This will cause list elements
    // to be sorted on age values.
    public int CompareTo(Person p)
    {
        return age - p.age;
    }
    public override string ToString()
    {
        return name + ":" + age;
    }
    // Must implement Equals.
    public bool Equals(Person p)
    {
        return (this.age == p.age);
    }
}
 
class Program
{
    static void Main(string[] args)
    {
        //Declare and instantiate a new generic SortedList class.
        //Person is the type argument.
        SortedList<Person> list = new SortedList<Person>();
 
        //Create name and age values to initialize Person objects.
        string[] names = new string[]{"Franscoise", "Bill", "Li", "Sandra", "Gunnar", "Alok", "Hiroyuki", "Maria", "Alessandro", "Raul"};
        int[] ages = new int[]{45, 19, 28, 23, 18, 9, 108, 72, 30, 35};
 
        //Populate the list.
        for (int x = 0; x < 10; x++)
        {
            list.AddHead(new Person(names[x], ages[x]));
        }
        //Print out unsorted list.
        foreach (Person p in list)
        {
            Console.WriteLine(p.ToString());
        }
 
        //Sort the list.
        list.BubbleSort();
 
        //Print out sorted list.
        foreach (Person p in list)
        {
            Console.WriteLine(p.ToString());
        }
 
        Console.WriteLine("Done");
    }
}

 

可以在一个类型指定多个接口作为约束,如下:

 class Stack<T> where T : IComparable<T>, IMyStack1<T>{} 

一个接口可以定义多个类型参数,如下:

 IDictionary<K,V> 

接口和类的继承规则


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C#中objectsender,EventHandlere有个毛作用发布时间:2022-07-10
下一篇:
在VisualBasic.NET和VisualC#.NET中创建控件数组发布时间:2022-07-10
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap