在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
此文仅用于记录自己的遗传算法的学习过程,对代码做了微微的改动,加了点注释,可能存在错误。 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace GA { class Program { #region 全局变量 /// <summary> /// 染色体信息 /// </summary> private class Chromosome { /// <summary> /// 用6bit对染色体进行编码,第1个元素表示正负,2-5以此存储二进制的的信息,最大表示31 /// </summary> public int[] bits = new int[6]; /// <summary> /// 适应值 /// </summary> public int fitValue; /// <summary> /// 选择概率 /// </summary> public double fitValuePercent; /// <summary> /// 累积概率 /// </summary> public double totalProbability; public Chromosome Clone()//染色体赋值,复制 { Chromosome c = new Chromosome(); for (int i = 0; i < bits.Length; i++)//逐个染色体赋值 { c.bits[i] = bits[i]; } c.fitValue = fitValue; c.fitValuePercent = fitValuePercent; c.totalProbability = totalProbability; return c; } } /// <summary> /// 变异几率 /// </summary> public static double varProbability = 0.02; /// <summary> /// 染色体组; /// </summary> private static List<Chromosome> chromosomes = new List<Chromosome>(); //父代 private static List<Chromosome> chromosomesChild = new List<Chromosome>(); //子代 private static Random random = new Random(); /// <summary> /// 选择类型 /// </summary> private enum ChooseType { Bubble,//冒泡; Roulette,//轮盘赌; } private static ChooseType chooseType = ChooseType.Roulette; //选择赌轮盘的方法 #endregion /// <summary> /// Main入口函数; /// </summary> /// <param name="args"></param> private static void Main(string[] args) { Console.WriteLine("遗传算法"); Console.WriteLine("求函数最大值函数为y = x*x-31x的最大值,-31<=x<=31"); int totalTime = 30; // 迭代次数,根据结果调整 Console.WriteLine("迭代次数为: " + totalTime); Console.WriteLine("初始化: "); //初始化; Init(); // 输出初始化数据; Print(); for (int i = 0; i < totalTime; i++) { Console.WriteLine("当前迭代次数: " + i); //重新计算fit值;; UpdateFitValue(); // 挑选染色体; Console.WriteLine("挑选:"); switch (chooseType) { case ChooseType.Bubble: // 排序; Console.WriteLine("排序:"); ChooseChromosome(); break; default: //轮盘赌; Console.WriteLine("轮盘赌:"); UpdateNext(); break; } Print(true); //交叉得到新个体 Console.WriteLine("交叉:"); CrossOperate(); Print(); //变异 Console.WriteLine("变异:"); VariationOperate(); Print(); } //挑选出最大适应值 int maxFit = chromosomes[0].fitValue; for (int i = 1; i < chromosomes.Count; i++) { if (chromosomes[i].fitValue > maxFit) { maxFit = chromosomes[i].fitValue; } } Console.WriteLine("最大值为: " + maxFit); Console.ReadKey(); } #region 打印输出 /// <summary> /// 打印; /// </summary> private static void Print(bool bLoadPercent = false) { Console.WriteLine("========================="); for (int i = 0; i < chromosomes.Count; i++) { Console.Write("第" + i + "条" + " 基因: "); for (int j = 0; j < chromosomes[i].bits.Length; j++) { Console.Write(" " + chromosomes[i].bits[j]); } int x = DeCode(chromosomes[i].bits); Console.Write(" x: " + x); Console.Write(" y: " + chromosomes[i].fitValue); if (bLoadPercent) { Console.Write(" 选择概率: " + chromosomes[i].fitValuePercent); } Console.WriteLine(); } Console.WriteLine("========================="); } #endregion #region 初始化 /// <summary> /// 初始化 /// </summary> private static void Init() { chromosomes.Clear(); int length = 30; // 染色体数量 int totalFit = 0; for (int i = 0; i < length; i++) { Chromosome chromosome = new Chromosome(); for (int j = 0; j < chromosome.bits.Length; j++) { // 随机出0或者1; int bitValue = random.Next(0, 2); chromosome.bits[j] = bitValue; } //获得十进制的值; int x = DeCode(chromosome.bits); int y = GetFitValue(x); chromosome.fitValue = y; chromosomes.Add(chromosome); //算出total fit; if (chromosome.fitValue <= 0) { totalFit += 0; } else { totalFit += chromosome.fitValue; } } } #endregion #region 解码,二进制装换 /// <summary> /// 解码,二进制装换; /// </summary> /// <param name="bits"></param> /// <returns></returns> private static int DeCode(int[] bits) { int result = bits[1] * 16 + bits[2] * 8 + bits[3] * 4 + bits[4] * 2 + bits[5] * 1;//第一个元素判断正负,后5个元素二进制转换十进制,所能表达的最大十进制数值为31 //通过第一个元素判断正负; if (bits[0] == 0) { return result; } else { return -result; } } #endregion #region 获取fitValue(适应度) /// <summary> /// 获取fitValue,返回值越大说明适应度越高 /// </summary> /// <param name="x"></param> /// <returns></returns> private static int GetFitValue(int x) { return x * x - 31 * x;//目标函数 y= x*x -31*x } #endregion #region 选择 /// <summary> /// 更新下一代; /// 基于轮盘赌选择方法,进行基因型的选择; /// </summary> private static void UpdateNext() { // 获取总的fit; double totalFitValue = 0; for (int i = 0; i < chromosomes.Count; i++) { //适应度为负数的取0(前提知道函数的最大值一定大于0) if (chromosomes[i].fitValue <= 0) { totalFitValue += 0; } else { totalFitValue += chromosomes[i].fitValue; } } Console.WriteLine("累计适应度(totalFitValue) :" + totalFitValue); //算出每个的fit percent; for (int i = 0; i < chromosomes.Count; i++) { if (chromosomes[i].fitValue <= 0) //杀掉适应度为负的基因 { chromosomes[i].fitValuePercent = 0; } else { chromosomes[i].fitValuePercent = chromosomes[i].fitValue / totalFitValue;//计算第i个基因的适应值(第i个基于的适应值/累计适应值) } Console.WriteLine("第" + i + " 个体选择概率(fitValuePercent):" + chromosomes[i].fitValuePercent); } ////计算累积概率 //// 第一个的累计概率就是自己的概率,循环完后,便可得到累计概率的值,便于后续的赌轮盘算法 chromosomes[0].totalProbability = chromosomes[0].fitValuePercent; double probability = chromosomes[0].totalProbability; for (int i = 1; i < chromosomes.Count; i++) { if (chromosomes[i].fitValuePercent != 0) //只对出现概率概率不为0的染色体进行操作 { chromosomes[i].totalProbability = chromosomes[i].fitValuePercent + probability; probability = chromosomes[i].totalProbability; } } chromosomesChild.Clear(); //轮盘赌选择方法,用于选出前两个; for (int i = 0; i < chromosomes.Count; i++) { double chooseNum = random.NextDouble(); //生成0.0-1.0之间的随机数,用于选择 Console.WriteLine("挑选的数值:" + chooseNum); //判断挑选的数值落在区间位置,从而确定选择的染色体 if (chooseNum < chromosomes[0].totalProbability) { chromosomesChild.Add(chromosomes[0].Clone()); } else { for (int j = 0; j < chromosomes.Count - 1; j++) //-1是因为去除了第1个染色体 { if (chromosomes[j].totalProbability <= chooseNum && chooseNum <= chromosomes[j + 1].totalProbability) //判断区间 { chromosomesChild.Add(chromosomes[j + 1].Clone()); //j是从0开始的, } } } } for (int i = 0; i < chromosomes.Count; i++) { chromosomes[i] = chromosomesChild[i]; //子代变父代,便于进入下一次循环 } } /// <summary> /// 选择染色体; /// </summary> private static void ChooseChromosome() { // 从大到小排序; chromosomes.Sort((a, b) => { return b.fitValue.CompareTo(a.fitValue); }); } #endregion #region 交叉 /// <summary> /// 交叉操作 /// </summary> private static void CrossOperate() { //选择交叉位置 int bitNum = chromosomes[0].bits.Length; //获取染色体位数 int a = random.Next(0, bitNum ); //生成0-染色体位数-1之间的随机数, int b = random.Next(0, bitNum ); if (a > b) //交换,排序 { int temp = a; a = b; b = temp; } Console.WriteLine("交叉范围:" + a + "— " + b); //交叉位置处进行交叉操作(第1条和第2条进行交叉,两两一对,以此类推,染色体个数优先选择偶数个) for (int j = 0; j < chromosomes.Count; j = j + 2) { for (int i = a; i <= b; i++) //从第一个随机数开始交叉 到第二个随机数结束 { int temp = chromosomes[j].bits[i]; chromosomes[j].bits[i] = chromosomes[j + 1].bits[i]; chromosomes[j + 1].bits[i] = temp; } //对交叉后生成的两条新染色体(二进制转码十进制)重新计算适应值 chromosomes[j].fitValue = GetFitValue(DeCode(chromosomes[j].bits)); chromosomes[j + 1].fitValue = GetFitValue(DeCode(chromosomes[j + 1].bits)); } } #endregion #region 变异 /// <summary> /// 变异操作 /// </summary> private static void VariationOperate() { int chromoNum = chromosomes.Count; //染色体数量 int geneNum = chromosomes[0].bits.Length - 1; //单个染色体基因数-1,去除用于判断正负的一个基因 int varSite = random.Next(1, chromoNum * geneNum + 1); //在所有的基因数范围中选择一个随机数 if (varSite <= chromoNum *geneNum *varProbability) //通过判断随机数是否小于等于 基因总数*变异概率 ,判断是否发生突变 //每条染色体有5个决定基因(排除第一个决定正负的基因) { Console.WriteLine("开始变异"); int row = random.Next(0, chromoNum ); //确定要突变的染色体编号 int col = random.Next(0, geneNum ); //确定要突变的基因 Console.WriteLine("变异的位置 :第" + row + "条染色体的第" + col + "个基因"); //0变1,1变0 if (chromosomes[row].bits[col] == 0) { chromosomes[row].bits[col] = 1; } else { chromosomes[row].bits[col] = 0; } chromosomes[row].fitValue = GetFitValue(DeCode(chromosomes[row].bits)); } } #endregion #region 重新计算fit值 /// <summary> /// 重新计算fit值; /// </summary> private static void UpdateFitValue() { for (int i = 0; i < chromosomes.Count; i++) { chromosomes[i].fitValue = GetFitValue(DeCode(chromosomes[i].bits)); } } #endregion } }
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论