算法的大致思想是通过行列式初等变换来求。
代码如下:
private double[,] ReverseMatrix( double[,] dMatrix, int Level ) { double dMatrixValue = MatrixValue( dMatrix, Level ); if( dMatrixValue == 0 ) return null;
double[,] dReverseMatrix = new double[Level,2*Level]; double x, c; // Init Reverse matrix for( int i = 0; i < Level; i++ ) { for( int j = 0; j < 2 * Level; j++ ) { if( j < Level ) dReverseMatrix[i,j] = dMatrix[i,j]; else dReverseMatrix[i,j] = 0; }
dReverseMatrix[i,Level + i ] = 1; }
for( int i = 0, j = 0; i < Level && j < Level; i++, j++ ) { if( dReverseMatrix[i,j] == 0 ) { int m = i; for( ; dMatrix[m,j] == 0; m++ ); if( m == Level ) return null; else { // Add i-row with m-row for( int n = j; n < 2 * Level; n++ ) dReverseMatrix[i,n] += dReverseMatrix[m,n]; } }
// Format the i-row with "1" start x = dReverseMatrix[i,j]; if( x != 1 ) { for( int n = j; n < 2 * Level; n++ ) if( dReverseMatrix[i,n] != 0 ) dReverseMatrix[i,n] /= x; }
// Set 0 to the current column in the rows after current row for( int s = Level - 1; s > i;s-- ) { x = dReverseMatrix[s,j]; for( int t = j; t < 2 * Level; t++ ) dReverseMatrix[s,t] -= ( dReverseMatrix[i,t]* x ); } }
// Format the first matrix into unit-matrix for( int i = Level - 2; i >= 0; i-- ) { for( int j = i + 1 ; j < Level; j++ ) if( dReverseMatrix[i,j] != 0 ) { c = dReverseMatrix[i,j]; for( int n = j; n < 2*Level; n++ ) dReverseMatrix[i,n] -= ( c * dReverseMatrix[j,n] ); } }
double[,] dReturn = new double[Level, Level]; for( int i = 0; i < Level; i++ ) for( int j = 0; j < Level; j++ ) dReturn[i,j] = dReverseMatrix[i,j+Level]; return dReturn; }
private double MatrixValue( double[,] MatrixList, int Level ) { double[,] dMatrix = new double[Level, Level]; for( int i = 0; i < Level; i++ ) for( int j = 0; j < Level; j++ ) dMatrix[i,j] = MatrixList[i,j]; double c, x; int k = 1; for( int i = 0, j = 0; i < Level && j < Level; i++, j++ ) { if( dMatrix[i,j] == 0 ) { int m = i; for( ; dMatrix[m,j] == 0; m++ ); if( m == Level ) return 0; else { // Row change between i-row and m-row for( int n = j; n < Level; n++ ) { c = dMatrix[i,n]; dMatrix[i,n] = dMatrix[m,n]; dMatrix[m,n] = c; }
// Change value pre-value k *= (-1); } }
// Set 0 to the current column in the rows after current row for( int s = Level - 1; s > i;s-- ) { x = dMatrix[s,j]; for( int t = j; t < Level; t++ ) dMatrix[s,t] -= dMatrix[i,t]* ( x/dMatrix[i,j] ); } }
double sn = 1; for( int i = 0; i < Level; i++ ) { if( dMatrix[i,i] != 0 ) sn *= dMatrix[i,i]; else return 0; } return k*sn; }
调用如下:
double[,] dMatrix = new double[3,3]{{0,1,2},{1,0,1},{4,2,1}}; double[,] dReturn = ReverseMatrix( dMatrix, 3 ); if( dReturn != null ) { for( int i=0; i < 3; i++ ) Debug.WriteLine( string.Format( "{0} {1} {2}", dReturn[i,0], dReturn[i,1],dReturn[i,2] ) ); }
Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=650142
|
请发表评论