★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ ➤微信公众号:山青咏芝(let_us_code) ➤博主域名:https://www.zengqiang.org ➤GitHub地址:https://github.com/strengthen/LeetCode ➤原文地址: ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。 ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创! ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
热烈欢迎,请直接点击!!!
进入博主App Store主页,下载使用各个作品!!!
注:博主将坚持每月上线一个新app!!!
Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can move up, down, left or right from and to an empty cell.
Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m-1, n-1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.
Example 1:
Input: grid = [[0,0,0], [1,1,0], [0,0,0], [0,1,1], [0,0,0]], k = 1 Output: 6 Explanation: The shortest path without eliminating any obstacle is 10. The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).
Example 2:
Input: grid = [[0,1,1], [1,1,1], [1,0,0]], k = 1 Output: -1 Explanation: We need to eliminate at least two obstacles to find such a walk.
Constraints:
grid.length == m grid[0].length == n 1 <= m, n <= 40 1 <= k <= m*n grid[i][j] == 0 or 1 grid[0][0] == grid[m-1][n-1] == 0
给你一个 m * n 的网格,其中每个单元格不是 0(空)就是 1(障碍物)。每一步,您都可以在空白单元格中上、下、左、右移动。
如果您 最多 可以消除 k 个障碍物,请找出从左上角 (0, 0) 到右下角 (m-1, n-1) 的最短路径,并返回通过该路径所需的步数。如果找不到这样的路径,则返回 -1。
示例 1:
输入: grid = [[0,0,0], [1,1,0], [0,0,0], [0,1,1], [0,0,0]], k = 1 输出:6 解释: 不消除任何障碍的最短路径是 10。 消除位置 (3,2) 处的障碍后,最短路径是 6 。该路径是 (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).
示例 2:
输入: grid = [[0,1,1], [1,1,1], [1,0,0]], k = 1 输出:-1 解释: 我们至少需要消除两个障碍才能找到这样的路径。
提示:
grid.length == m grid[0].length == n 1 <= m, n <= 40 1 <= k <= m*n grid[i][j] == 0 or 1 grid[0][0] == grid[m-1][n-1] == 0
|
请发表评论