• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

【动态规划】cf1034C.RegionSeparation

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 质因数分解套路的复杂度分析的动态规划

题目大意

有一颗$n$个节点有点权的树,初始整棵树为$1$号区域,要求满足下列规则:

  • 除非$i$是最后一个等级,否则每一个$i$级区域都要被分成至少两个$i+1$级区域
  • 对于每种等级,每个点必须恰好属于一个区域
  • 一个区域的点集必须是连通的
  • 对于相同等级,每个区域必须拥有相同的点权和

问有多少种合法的划分方案,$n \le 10^6,a_i \le 10^9$.


题目分析

首先考虑判断把树分为$k$个2级区域的合法性$f_k$,记点权和为$tot$。

一种朴素的想法就是对于每一个$k$,自底向上遍历整棵树,若剩余子树大小恰好为$tot\over k$,就割去这颗子树;如果整棵树能够被处理完,$k$就是合法的。每次判定复杂度为$O(n)$.

注意到这个想法里,每次割去子树的大小$s_i$恰好是$tot\over k$的倍数;并且不难发现,$k$合法的充要条件就是恰有$k$个$s_i≡0(\text{mod }\frac{tot}{k})$。简短解释一下:对于一颗$s_i≡0(\text{mod }\frac{tot}{k})$的子树,由于它的所有子树都奉行割去$s_j≡0(\text{mod }\frac{tot}{k})$的原则,那么剩下的包括点$i$的连通块就是$i$子树内最小的$\ge {tot\over k}$的连通块。因此,$\sum [s_k≡0(\text{mod }\frac{tot}{k})] \le k$;并且当且仅当$=k$时合法。

有了这个性质,考虑如何统计$f_k$。容易发现对于合法的$k$,$\frac{tot}{k}$的任意约数$k'$都是合法的。而对于子树$s_i$,其最小有贡献的$k=\frac{tot}{\text{gcd}(s_i,tot)}$。所以这里只需要对每个$s_i$存下最小的合法$k$,再以质因数分解题的套路处理一遍就能算出$[f_k=k]$了。因此处理$f_k$的复杂度是$O(n\ln n)$。

接下去考虑dp计算把整棵树分为若干个$i$级区域的方案数$g_i$。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
帮你把java代码自动翻译到c/c++jni调用发布时间:2022-07-14
下一篇:
C语言字符串与数字相互转换发布时间:2022-07-14
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap