在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
//高级运算符
import UIKit
/*高级运算符(Advanced Operators):位运算符、溢出运算符、优先级和结合性、运算符函数、自定义运算符
位运算符: 1.位运算符可以操作数据结构中每个独立的比特位。它们通常被用在底层开发中,比如图形编程和创建设备驱动。位运算符在处理外部资源的原始数据时也十分有用,比如对自定义通信协议传输的数据进行编码和解码 按位取反运算符(~)可以对一个数值的全部比特位进行取反: 按位与运算符(&)可以对两个数的比特位进行合并。它返回一个新的数,只有当两个数的对应位都为 1 的时候,新数的对应位才为 1 按位或运算符(|)可以对两个数的比特位进行比较。它返回一个新的数,只要两个数的对应位中有任意一个为 1 时,新数的对应位就为 1 按位异或运算符(^)可以对两个数的比特位进行比较。它返回一个新的数,当两个数的对应位不相同时,新数的对应位就为 1 按位左移、右移运算符:按位左移运算符(<<)和按位右移运算符(>>)可以对一个数的所有位进行指定位数的左移和右移,但是需要遵守下面定义的规则。 1.对一个数进行按位左移或按位右移,相当于对这个数进行乘以 2 或除以 2 的运算。将一个整数左移一位,等价于将这个数乘以 2,同样地,将一个整数右移一位,等价于将这个数除以 2。 1.对无符号整数进行移位的规则如下: 1.已经存在的位按指定的位数进行左移和右移。 2.任何因移动而超出整型存储范围的位都会被丢弃。 3.用 0 来填充移位后产生的空白位。 2.有符号整数的移位运算相对复杂得多,这种复杂性源于有符号整数的二进制表现形式: 1.有符号整数使用第 1 个比特位(通常被称为符号位)来表示这个数的正负。符号位为 0 代表正数,为 1 代表负数,其余的比特位(通常被称为数值位)存储了实际的值。有符号正整数和无符号数的存储方式是一样的,都是从 0 开始算起 2.负数的存储方式略有不同。它存储的值的绝对值等于 2 的 n 次方减去它的实际值(也就是数值位表示的值),这里的 n 为数值位的比特位数。一个 8 比特位的数有 7 个比特位是数值位,所以是 2 的 7 次方,即 128 3.如:1 1111100,符号位为 1,说明这是一个负数,另外 7 个位则代表了数值 124(即 128 - 4)的二进制表示,结果是-(128-124) = -4
4.如果想对两个Int8进行加法运算,我们只需要将这两个数的全部 8 个比特位进行相加,并且将计算结果中超出 8 位的数值丢弃 5.当对正整数进行按位右移运算时,遵循与无符号整数相同的规则,但是对于移位产生的空白位使用符号位进行填充,而不是用 0
溢出运算符:在默认情况下,当向一个整数赋予超过它容量的值时,Swift 默认会报错,而不是生成一个无效的数 1.也可以选择让系统在数值溢出的时候采取截断处理,而非报错。可以使用 Swift 提供的三个溢出运算符来让系统支持整数溢出运算。这些运算符都是以 & 开头的: 溢出加法 &+ 溢出减法 &- 溢出乘法 &* 2.数值溢出:数值有可能出现上溢或者下溢,在对有符号整型数值进行溢出加法或溢出减法运算时,符号位也需要参与计算 var unsignedOverflow = UInt8.max // unsignedOverflow 等于 UInt8 所能容纳的最大整数 255 unsignedOverflow = unsignedOverflow &+ 1 // 此时 unsignedOverflow 等于 0
优先级和结合性:运算符的优先级使得一些运算符优先于其他运算符,高优先级的运算符会先被计算,结合性定义了相同优先级的运算符是如何结合的(左结合、右结合)
运算符函数: 1.类和结构体可以为现有的运算符提供自定义的实现,这通常被称为运算符重载 2.不能对默认的赋值运算符(=)进行重载。只有组合赋值运算符可以被重载。同样地,也无法对三目条件运算符 (a ? b : c) 进行重载 单目前缀和后缀运算符、双目中缀运算符: 1.单目运算符只运算一个值,当运算符出现在值之前时,它就是前缀的(例如 -a),而当它出现在值之后时,它就是后缀的(例如 i++)。 2.要实现前缀或者后缀运算符,需要在声明运算符函数的时候在 func 关键字之前指定 prefix 或者 postfix 修饰符 复合赋值运算符:将赋值运算符(=)与其它运算符进行结合。例如,将加法与赋值结合成加法赋值运算符(+=)。在实现的时候,需要把运算符的左参数设置成 inout 类型,因为这个参数的值会在运算符函数内直接被修改 等价运算符:自定义的类和结构体没有对等价运算符进行默认实现,等价运算符通常被称为“相等”运算符(==)与“不等”运算符(!=),自定义实现的方法与其它中缀运算符一样
自定义运算符: 1.除了实现标准运算符,在 Swift 中还可以声明和实现自定义运算符 2.新的运算符要使用 operator 关键字在全局作用域内进行定义,同时还要指定 prefix、infix 或者 postfix 修饰符: 如:prefix operator +++ {} 自定义中缀运算符的优先级和结合性:自定义的中缀运算符也可以指定优先级和结合性 1.结合性可取的值有left,right 和 none,非结合none运算符不能跟其他相同优先级的运算符写在一起 2.结合性的默认值是 none,优先级的默认值 100 3. */ let initialBits: UInt8 = 0b00001111 let invertedBits = ~initialBits // 等于 0b11110000
let firstSixBits: UInt8 = 0b11111100 let lastSixBits: UInt8 = 0b00111111 let middleFourBits = firstSixBits & lastSixBits // 等于 00111100
let someBits: UInt8 = 0b10110010 let moreBits: UInt8 = 0b01011110 let combinedbits = someBits | moreBits // 等于 11111110
let firstBits: UInt8 = 0b00010100 let otherBits: UInt8 = 0b00000101 let outputBits = firstBits ^ otherBits // 等于 00010001
let shiftBits: UInt8 = 4 // 即二进制的 00000100 shiftBits << 1 // 00001000 shiftBits << 2 // 00010000 let pink: UInt32 = 0xCC6699 //可以使用移位运算对其他的数据类型进行编码和解码 let redComponent = (pink & 0xFF0000) >> 16 // redComponent 是 0xCC,即 204 let greenComponent = (pink & 0x00FF00) >> 8 // greenComponent 是 0x66, 即 102 let blueComponent = pink & 0x0000FF // blueComponent 是 0x99,即 153
var unsignedOverflow = UInt8.min // unsignedOverflow 等于 UInt8 所能容纳的最小整数 0 unsignedOverflow = unsignedOverflow &- 1 // 此时 unsignedOverflow 等于 255 var signedOverflow = Int8.min // signedOverflow 等于 Int8 所能容纳的最小整数 -128 signedOverflow = signedOverflow &- 1 // 此时 signedOverflow 等于 127
//================= struct Vector2D { var x = 0.0, y = 0.0 } func + (left: Vector2D, right: Vector2D) -> Vector2D { return Vector2D(x: left.x + right.x, y: left.y + right.y) } let vector = Vector2D(x: 3.0, y: 1.0) let anotherVector = Vector2D(x: 2.0, y: 4.0) let combinedVector = vector + anotherVector // combinedVector 是一个新的 Vector2D 实例,值为 (5.0, 5.0)
prefix func - (vector: Vector2D) -> Vector2D { return Vector2D(x: -vector.x, y: -vector.y) } let positive = Vector2D(x: 3.0, y: 4.0) let negative = -positive // negative 是一个值为 (-3.0, -4.0) 的 Vector2D 实例 let alsoPositive = -negative // alsoPositive 是一个值为 (3.0, 4.0) 的 Vector2D 实例
func += (inout left: Vector2D, right: Vector2D) { left = left + right } var original = Vector2D(x: 1.0, y: 2.0) let vectorToAdd = Vector2D(x: 3.0, y: 4.0) original += vectorToAdd // original 的值现在为 (4.0, 6.0)
prefix func ++ (inout vector: Vector2D) -> Vector2D { vector += Vector2D(x: 1.0, y: 1.0) return vector } var toIncrement = Vector2D(x: 3.0, y: 4.0) let afterIncrement = ++toIncrement // toIncrement 的值现在为 (4.0, 5.0), afterIncrement 的值同样为 (4.0, 5.0)
func == (left: Vector2D, right: Vector2D) -> Bool { //自定义等价运算符 return (left.x == right.x) && (left.y == right.y) } func != (left: Vector2D, right: Vector2D) -> Bool { return !(left == right) } let twoThree = Vector2D(x: 2.0, y: 3.0) let anotherTwoThree = Vector2D(x: 2.0, y: 3.0) if twoThree == anotherTwoThree { print("These two vectors are equivalent.") }
prefix operator +++ {} //必须先在全局作用域内进行定义 prefix func +++ (inout vector: Vector2D) -> Vector2D { vector += vector return vector } var toBeDoubled = Vector2D(x: 1.0, y: 4.0) let afterDoubling = +++toBeDoubled // toBeDoubled 现在的值为 (2.0, 8.0), afterDoubling 现在的值也为 (2.0, 8.0)
//================= infix operator +- { associativity left precedence 140 } func +- (left: Vector2D, right: Vector2D) -> Vector2D { return Vector2D(x: left.x + right.x, y: left.y - right.y) } let firstVector = Vector2D(x: 1.0, y: 2.0) let secondVector = Vector2D(x: 3.0, y: 4.0) let plusMinusVector = firstVector +- secondVector// plusMinusVector 是一个 Vector2D 实例,并且它的值为 (4.0, -2.0)
|
请发表评论