在讲解Breadth-first search 算法之前,我们先简单介绍两种数据类型Graph 和Queue 。
Graph
这就是一个图,它由两部分组成:
- 节点, 使用圆圈表示的部分
- 边, 使用线表示的地方,通常都是有方向的线
这种数据结构可以形象的表示一个网络 ,而在实际解决问题的时候,我们除了找到类似网络 的模拟外,还需要考虑下边两点:
而如何实现这个查找的过程就用到了算法。
在项目管理专业的工程方法中,存在一个有向连接图方法,根据这个图我们就可以划出邻接矩阵,然后再求出可达矩阵,缩减矩阵等等,说这些内容,是想表达在用代码模拟图的时候,可以使用矩阵的方式来描述,但本篇中采用的是另一种方式,我们使用数组保存某个节点的neighbor节点。
上边一段话会在下边的代码中进行展示:
Graph.swift
// MARK: - Edge
public class Edge: Equatable {
public var neighbor: Node
public init(neighbor: Node) {
self.neighbor = neighbor
}
}
public func == (lhs: Edge, rhs: Edge) -> Bool {
return lhs.neighbor == rhs.neighbor
}
// MARK: - Node
public class Node: CustomStringConvertible, Equatable {
public var neighbors: [Edge]
public private(set) var label: String
public var distance: Int?
public var visited: Bool
public init(label: String) {
self.label = label
neighbors = []
visited = false
}
public var description: String {
if let distance = distance {
return "Node(label: \(label), distance: \(distance))"
}
return "Node(label: \(label), distance: infinity)"
}
public var hasDistance: Bool {
return distance != nil
}
public func remove(edge: Edge) {
neighbors.remove(at: neighbors.index { $0 === edge }!)
}
}
public func == (lhs: Node, rhs: Node) -> Bool {
return lhs.label == rhs.label && lhs.neighbors == rhs.neighbors
}
// MARK: - Graph
public class Graph: CustomStringConvertible, Equatable {
public private(set) var nodes: [Node]
public init() {
self.nodes = []
}
public func addNode(_ label: String) -> Node {
let node = Node(label: label)
nodes.append(node)
return node
}
public func addEdge(_ source: Node, neighbor: Node) {
let edge = Edge(neighbor: neighbor)
source.neighbors.append(edge)
}
public var description: String {
var description = ""
for node in nodes {
if !node.neighbors.isEmpty {
description += "[node: \(node.label) edges: \(node.neighbors.map { $0.neighbor.label})]"
}
}
return description
}
public func findNodeWithLabel(_ label: String) -> Node {
return nodes.filter { $0.label == label }.first!
}
public func duplicate() -> Graph {
let duplicated = Graph()
for node in nodes {
_ = duplicated.addNode(node.label)
}
for node in nodes {
for edge in node.neighbors {
let source = duplicated.findNodeWithLabel(node.label)
let neighbour = duplicated.findNodeWithLabel(edge.neighbor.label)
duplicated.addEdge(source, neighbor: neighbour)
}
}
return duplicated
}
}
public func == (lhs: Graph, rhs: Graph) -> Bool {
return lhs.nodes == rhs.nodes
}
Queue
队列同样是一种数据结构,它遵循FIFO的原则,因为Swift没有现成的这个数据结构,因此我们手动实现一个。
值得指出的是,为了提高性能,我们针对在数组中读取数据做了优化。比如,当在数组中取出第一个值时,如果不做优化,那么这一步的消耗为O(n),我们采取的解决方法就是把该位置先置为nil,然后设置一个阈值,当达到阈值时,在对数组做进不去的处理。
这一部分的代码相当简单
Queue.swift
public struct Queue<T> {
fileprivate var array = [T?]()
fileprivate var head = 0
public init() {
}
public var isEmpty: Bool {
return count == 0
}
public var count: Int {
return array.count - head
}
public mutating func enqueue(_ element: T) {
array.append(element)
}
public mutating func dequeue() -> T? {
guard head < array.count, let element = array[head] else { return nil }
array[head] = nil
head += 1
let percentage = Double(head) / Double(array.count)
if array.count > 50 && percentage > 0.25 {
array.removeFirst(head)
head = 0
}
return element
}
public var front: T? {
if isEmpty {
return nil
} else {
return array[head]
}
}
}
Breadth-first search
其实这个算法的思想也很简单,我们已源点为中心,一层一层的往外查找,在遍历到某一层的某个节点时,如果该节点是我们要找的数据,那么就退出循环,如果没找到,那么就把该节点的neighbor节点加入到队列中,这就是该算法的核心原理。
打破循环的条件需要根据实际情况来设定。
//: Playground - noun: a place where people can play
import UIKit
import Foundation
var str = "Hello, playground"
func breadthFirstSearch(_ graph: Graph, source: Node) -> [String] {
/// 创建一个队列并把源Node放入这个队列中
var queue = Queue<Node>()
queue.enqueue(source)
/// 创建一个数组用于存放结果
var nodesResult = [source.label]
/// 设置Node的visited为true,因为我们会把这个当做一个开关
source.visited = true
/// 开始遍历
while let node = queue.dequeue() {
for edge in node.neighbors {
let neighborNode = edge.neighbor
if !neighborNode.visited {
queue.enqueue(neighborNode)
neighborNode.visited = true
nodesResult.append(neighborNode.label)
}
}
}
return nodesResult
}
let graph = Graph()
let nodeA = graph.addNode("a")
let nodeB = graph.addNode("b")
let nodeC = graph.addNode("c")
let nodeD = graph.addNode("d")
let nodeE = graph.addNode("e")
let nodeF = graph.addNode("f")
let nodeG = graph.addNode("g")
let nodeH = graph.addNode("h")
graph.addEdge(nodeA, neighbor: nodeB)
graph.addEdge(nodeA, neighbor: nodeC)
graph.addEdge(nodeB, neighbor: nodeD)
graph.addEdge(nodeB, neighbor: nodeE)
graph.addEdge(nodeC, neighbor: nodeF)
graph.addEdge(nodeC, neighbor: nodeG)
graph.addEdge(nodeE, neighbor: nodeH)
graph.addEdge(nodeE, neighbor: nodeF)
graph.addEdge(nodeF, neighbor: nodeG)
let nodesExplored = breadthFirstSearch(graph, source: nodeA)
print(nodesExplored)
总结
实现的代码不是重点,重要的是理解这些思想,在实际情况中能够得出解决的方法。当然跟实现的语言也没有关系。
使用playground时,command + 1 可以看到Source文件夹,把单独的类放进去就可以加载进来了。上边的内容来自这个网站swift-algorithm-club
|
请发表评论