在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
include/linux/i2c.h struct i2c_msg; I2C驱动主要包含三部分:I2C核心、I2C总线驱动、I2C设备驱动,它们主要的数据结构在目录:/include/linux/i2c.h struct i2c_driver 1 /* 2 * A driver is capable of handling one or more physical devices present on 3 * I2C adapters. This information is used to inform the driver of adapter 4 * events. 5 * 6 * The driver.owner field should be set to the module owner of this driver. 7 * The driver.name field should be set to the name of this driver. 8 */ 9 struct i2c_driver { 10 int id; 11 unsigned int class; 12 13 /* Notifies the driver that a new bus has appeared. This routine 14 * can be used by the driver to test if the bus meets its conditions 15 * & seek for the presence of the chip(s) it supports. If found, it 16 * registers the client(s) that are on the bus to the i2c admin. via 17 * i2c_attach_client. (LEGACY I2C DRIVERS ONLY) 18 */ 19 int (*attach_adapter)(struct i2c_adapter *); 20 int (*detach_adapter)(struct i2c_adapter *); 21 22 /* tells the driver that a client is about to be deleted & gives it 23 * the chance to remove its private data. Also, if the client struct 24 * has been dynamically allocated by the driver in the function above, 25 * it must be freed here. (LEGACY I2C DRIVERS ONLY) 26 */ 27 int (*detach_client)(struct i2c_client *); 28 29 /* Standard driver model interfaces, for "new style" i2c drivers. 30 * With the driver model, device enumeration is NEVER done by drivers; 31 * it's done by infrastructure. (NEW STYLE DRIVERS ONLY) 32 */ 33 int (*probe)(struct i2c_client *); 34 int (*remove)(struct i2c_client *); 35 36 /* driver model interfaces that don't relate to enumeration */ 37 void (*shutdown)(struct i2c_client *); 38 int (*suspend)(struct i2c_client *, pm_message_t mesg); 39 int (*resume)(struct i2c_client *); 40 41 /* a ioctl like command that can be used to perform specific functions 42 * with the device. 43 */ 44 int (*command)(struct i2c_client *client,unsigned int cmd, void *arg); 45 46 struct device_driver driver; 47 struct list_head list; 48 }; struct i2c_client 1 /** 2 * struct i2c_client - represent an I2C slave device 3 * @addr: Address used on the I2C bus connected to the parent adapter. 4 * @name: Indicates the type of the device, usually a chip name that's 5 * generic enough to hide second-sourcing and compatible revisions. 6 * @dev: Driver model device node for the slave. 7 * @driver_name: Identifies new-style driver used with this device; also 8 * used as the module name for hotplug/coldplug modprobe support. 9 * 10 * An i2c_client identifies a single device (i.e. chip) connected to an 11 * i2c bus. The behaviour is defined by the routines of the driver. 12 */ 13 struct i2c_client { 14 unsigned short flags; /* div., see below */ 15 unsigned short addr; /* chip address - NOTE: 7bit */ 16 /* addresses are stored in the */ 17 /* _LOWER_ 7 bits */ 18 char name[I2C_NAME_SIZE]; 19 struct i2c_adapter *adapter; /* the adapter we sit on */ 20 struct i2c_driver *driver; /* and our access routines */ 21 int usage_count; /* How many accesses currently */ 22 /* to the client */ 23 struct device dev; /* the device structure */ 24 int irq; /* irq issued by device (or -1) */ 25 char driver_name[KOBJ_NAME_LEN]; 26 struct list_head list; 27 struct completion released; 28 }; struct i2c_algorithm 1 /* 2 * The following structs are for those who like to implement new bus drivers: 3 * i2c_algorithm is the interface to a class of hardware solutions which can 4 * be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584 5 * to name two of the most common. 6 */ 7 struct i2c_algorithm { 8 /* If an adapter algorithm can't do I2C-level access, set master_xfer 9 to NULL. If an adapter algorithm can do SMBus access, set 10 smbus_xfer. If set to NULL, the SMBus protocol is simulated 11 using common I2C messages */ 12 /* master_xfer should return the number of messages successfully 13 processed, or a negative value on error */ 14 int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs, 15 int num); 16 int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr, 17 unsigned short flags, char read_write, 18 u8 command, int size, union i2c_smbus_data * data); 19 20 /* --- ioctl like call to set div. parameters. */ 21 int (*algo_control)(struct i2c_adapter *, unsigned int, unsigned long); 22 23 /* To determine what the adapter supports */ 24 u32 (*functionality) (struct i2c_adapter *); 25 }; struct i2c_adapter
1 /* 2 * i2c_adapter is the structure used to identify a physical i2c bus along 3 * with the access algorithms necessary to access it. 4 */ 5 struct i2c_adapter { 6 struct module *owner; 7 unsigned int id; 8 unsigned int class; 9 const struct i2c_algorithm *algo; /* the algorithm to access the bus */ 10 void *algo_data; 11 12 /* --- administration stuff. */ 13 int (*client_register)(struct i2c_client *); 14 int (*client_unregister)(struct i2c_client *); 15 16 /* data fields that are valid for all devices */ 17 u8 level; /* nesting level for lockdep */ 18 struct mutex bus_lock; 19 struct mutex clist_lock; 20 21 int timeout; 22 int retries; 23 struct device dev; /* the adapter device */ 24 25 int nr; 26 struct list_head clients; 27 struct list_head list; 28 char name[48]; 29 struct completion dev_released; 30 }
I2C核心 I2C核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(algorithm)上层的与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。 I2C总线驱动 I2C总线驱动是对I2C硬件体系结构中适配器段端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。I2C总线驱动主要包括I2C适配器数据结构i2c_adapter、I2C适配器的Algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及从设备方式读写、产生ACK等。 I2C设备驱动 I2C设备驱动即客户驱动时对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。I2C设备驱动主要包含数据结构i2c_driver和i2c_client,我们需要具体设备实现其中的成员函数。 在linux2.6内核中,所有设备都在sysfs文件系统中显示,在sysfs虚拟文件系统中存放了驱动挂载的总线以及device、driver,当我们注册一个driver后,内核会将我们注册的这个driver添加到这类驱动总线上这类总线的拥有一个共同的类似于一个基类kobject,而kset就是koject的一个集合。我们在写驱动的时候一般不会去分析kobject、kset,毕竟他们在内核里面是非常顶层的软件抽象层,但是对于内核整个驱动框架,却不能不分析这类抽象层,下图是我在树莓派所做的截图:
我们可以看到在sys文件目录下面有bus、class等,进入bus后会看到各种设备驱动,如在I2C中我们可以看到device、drivers,当然这些目录下面都没有什么内容应为sysfs是一个虚拟文件系统主要是记录各个进程和内核方面的信息。我们的驱动设备如何和虚拟文件系统产生关系了呢,就是kobject在这儿起了作用,我们的device、driver最终都会挂载一个总线上,后面我们会看到sysfs申请内存为device或者driver建立节点。 同样注册一个device后也会挂载在总线上。其实I2C我们也可以看成设备-总线-驱动模型, i2c_register_driver(THIS_MODULE, driver) 1 /* 2 * An i2c_driver is used with one or more i2c_client (device) nodes to access 3 * i2c slave chips, on a bus instance associated with some i2c_adapter. There 4 * are two models for binding the driver to its device: "new style" drivers 5 * follow the standard Linux driver model and just respond to probe() calls 6 * issued if the driver core sees they match(); "legacy" drivers create device 7 * nodes themselves. 8 */ 9 10 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 11 { 12 int res; 13 14 /* new style driver methods can't mix with legacy ones */ 15 if (is_newstyle_driver(driver)) { 16 if (driver->attach_adapter || driver->detach_adapter 17 || driver->detach_client) { 18 printk(KERN_WARNING 19 "i2c-core: driver [%s] is confused\n", 20 driver->driver.name); 21 return -EINVAL; 22 } 23 } 24 25 /* add the driver to the list of i2c drivers in the driver core */ 26 driver->driver.owner = owner; 27 driver->driver.bus = &i2c_bus_type; 28 29 /* for new style drivers, when registration returns the driver core 30 * will have called probe() for all matching-but-unbound devices. 31 */ 32 res = driver_register(&driver->driver); 33 if (res) 34 return res; 35 36 mutex_lock(&core_lists); 37 38 list_add_tail(&driver->list,&drivers); 39 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name); 40 41 /* legacy drivers scan i2c busses directly */ 42 if (driver->attach_adapter) { 43 struct i2c_adapter *adapter; 44 45 list_for_each_entry(adapter, &adapters, list) { 46 driver->attach_adapter(adapter); 47 } 48 } 49 50 mutex_unlock(&core_lists); 51 return 0; 52 } driver_register(&driver->driver);
1 /** 2 * driver_register - register driver with bus 3 * @drv: driver to register 4 * 5 * We pass off most of the work to the bus_add_driver() call, 6 * since most of the things we have to do deal with the bus 7 * structures. 8 */ 9 int driver_register(struct device_driver * drv) 10 { 11 if ((drv->bus->probe && drv->probe) || 12 (drv->bus->remove && drv->remove) || 13 (drv->bus->shutdown && drv->shutdown)) { 14 printk(KERN_WARNING "Driver '%s' needs updating - please use bus_type methods\n", drv->name); 15 } 16 klist_init(&drv->klist_devices, NULL, NULL); 17 return bus_add_driver(drv); 18 } klist_init(&drv->klist_devices, NULL, NULL);
1 /** 2 * driver_register - register driver with bus 3 * @drv: driver to register 4 * 5 * We pass off most of the work to the bus_add_driver() call, 6 * since most of the things we have to do deal with the bus 7 * structures. 8 */ 9 int driver_register(struct device_driver * drv) 10 { 11 if ((drv->bus->probe && drv->probe) || 12 (drv->bus->remove && drv->remove) || 13 (drv->bus->shutdown && drv->shutdown)) { 14 printk(KERN_WARNING "Driver '%s' needs updating - please use bus_type methods\n", drv->name); 15 } 16 klist_init(&drv->klist_devices, NULL, NULL); 17 return bus_add_driver(drv); 18 } bus_add_driver(drv);
1 /** 2 * bus_add_driver - Add a driver to the bus. 3 * @drv: driver. 4 * 5 */ 6 int bus_add_driver(struct device_driver *drv) 7 { 8 struct bus_type * bus = get_bus(drv->bus); 9 int error = 0; 10 11 if (!bus) 12 return -EINVAL; 13 14 pr_debug("bus %s: add driver %s\n", bus->name, drv->name); 15 error = kobject_set_name(&drv->kobj, "%s", drv->name); 16 if (error) 17 goto out_put_bus; 18 drv->kobj.kset = &bus->drivers; 19 if ((error = kobject_register(&drv->kobj))) 20 goto out_put_bus; 21 22 if (drv->bus->drivers_autoprobe) { 23 error = driver_attach(drv); 24 if (error) 25 goto out_unregister; 26 } 27 klist_add_tail(&drv->knode_bus, &bus->klist_drivers); 28 module_add_driver(drv->owner, drv); 29 30 error = driver_add_attrs(bus, drv); 31 if (error) { 32 /* How the hell do we get out of this pickle? Give up */ 33 printk(KERN_ERR "%s: driver_add_attrs(%s) failed\n", 34 __FUNCTION__, drv->name); 35 } 36 error = add_bind_files(drv); 37 if (error) { 38 /* Ditto */ 39 printk(KERN_ERR "%s: add_bind_files(%s) failed\n", 40 __FUNCTION__, drv->name); 41 } 42 43 return error; 44 out_unregister: 45 kobject_unregister(&drv->kobj); 46 out_put_bus: 47 put_bus(bus); 48 return error; 49 } kobject_register(&drv->kobj) 1 /** 2 * kobject_register - initialize and add an object. 3 * @kobj: object in question. 4 */ 5 6 int kobject_register(struct kobject * kobj) 7 { 8 int error = -EINVAL; 9 if (kobj) { 10 kobject_init(kobj); 11 error = kobject_add(kobj); 12 if (!error) 13 kobject_uevent(kobj, KOBJ_ADD); 14 } 15 return error; 16 } kobject_add(kobj);
1 /** 2 * kobject_add - add an object to the hierarchy. 3 * @kobj: object. 4 */ 5 int kobject_add(struct kobject * kobj) 6 { 7 return kobject_shadow_add(kobj, NULL); 8 } kobject_shadow_add(kobj, NULL);
1 /** 2 * kobject_shadow_add - add an object to the hierarchy. 3 * @kobj: object. 4 * @shadow_parent: sysfs directory to add to. 5 */ 6 7 int kobject_shadow_add(struct kobject * kobj, struct dentry *shadow_parent) 8 { 9 int error = 0; 10 struct kobject * parent; 11 12 if (!(kobj = kobject_get(kobj))) 13 return -ENOENT; 14 if (!kobj->k_name) 15 kobj->k_name = kobj->name; 16 if (!*kobj->k_name) { 17 pr_debug("kobject attempted to be registered with no name!\n"); 18 WARN_ON(1); 19 kobject_put(kobj); 20 return -EINVAL; 21 } 22 parent = kobject_get(kobj->parent); 23 24 pr_debug("kobject %s: registering. parent: %s, set: %s\n", 25 kobject_name(kobj), parent ? kobject_name(parent) : "<NULL>", 26 kobj->kset ? kobj->kset->kobj.name : "<NULL>" ); 27 28 if (kobj->kset) { 29 spin_lock(&kobj->kset->list_lock); 30 31 if (!parent) 32 parent = kobject_get(&kobj->kset->kobj); 33 34 list_add_tail(&kobj->entry,&kobj->kset->list); 35 spin_unlock(&kobj->kset->list_lock); 36 kobj->parent = parent; 37 } 38 39 error = create_dir(kobj, shadow_parent); 40 if (error) { 41 /* unlink does the kobject_put() for us */ 42 unlink(kobj); 43 kobject_put(parent); 44 45 /* be noisy on error issues */ 46 if (error == -EEXIST) 47 printk(KERN_ERR "kobject_add failed for %s with " 48 "-EEXIST, don't try to register things with " 49 "the same name in the same directory.\n", 50 kobject_name(kobj)); 51 else 52 printk(KERN_ERR "kobject_add failed for %s (%d)\n", 53 kobject_name(kobj), error); 54 dump_stack(); 55 } 56 57 return error; 58 } create_dir(kobj, shadow_parent);
1 static int create_dir(struct kobject * kobj, struct dentry *shadow_parent) 2 { 3 int error = 0; 4 if (kobject_name(kobj)) { 5 error = sysfs_create_dir(kobj, shadow_parent); 6 if (!error) { 7 if ((error = populate_dir(kobj))) 8 sysfs_remove_dir(kobj); 9 } 10 } 11 return error; 12 } sysfs_create_dir(kobj, shadow_parent);
1 /** 2 * sysfs_create_dir - create a directory for an object. 3 * @kobj: object we're creating directory for. 4 * @shadow_parent: parent parent object. 5 */ 6 7 int sysfs_create_dir(struct kobject * kobj, struct dentry *shadow_parent) 8 { 9 struct dentry * dentry = NULL; 10 struct dentry * parent; 11 int error = 0; 12 13 BUG_ON(!kobj); 14 15 if (shadow_parent) 16 parent = shadow_parent; 17 else if (kobj->parent) 18 parent = kobj->parent->dentry; 19 else if (sysfs_mount && sysfs_mount->mnt_sb) 20 parent = sysfs_mount->mnt_sb->s_root; 21 else 22 return -EFAULT; 23 24 error = create_dir(kobj,parent,kobject_name(kobj),&dentry); 25 if (!error |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论