一、环境: 虚拟机: (1)系统:centos7.5_1804(64bit)版本 (2)软件环境:git、python3.5.3、Jupyter4.4.0 二、下载安装脚本: 资源及安装说明:https://github.com/root-project/cling (1)下载安装脚本文件方式: wget https://raw.githubusercontent.com/root-project/cling/master/tools/packaging/cpt.py #由于网站在国外,下载这个文件很慢,不建议这样操作。 (2)克隆软件仓库方式: (ccl353) [python@centos75 test]$ git clone https://github.com/root-project/cling.git #此方式由于使用了镜像站点,速度很快。命令执行完成后,在当前目录下产生cling目录。 三、cmake安装: (ccl353) [python@centos75 test]$ pip install cmake==3.11.4 #cmake版本要求3.6.4以上,此处指定版本安装3.11.4版,也可安装最新版,没有特殊要求。 四、安装过程: 1、c++核心代码编译过程: (ccl353) [python@centos75 test]$ cd cling/tools/packaging (ccl353) [python@centos75 packaging]$ ./cpt.py --check-requirements && ./cpt.py --create-dev-env Debug --with-workdir=./cling-build/ #此过程很长,包括编译过程中下载文件的时间及编译过程的时间,以小时计,中间有几个错误需要逐一解决: (1)“c++: 编译器内部错误:已杀死(程序 cc1plus)”——内存不足,增加内存或swap交换缓存。 (2)“collect2: 错误:ld 以信号 9 [已杀死] 退出。”——swap交换缓存不足,增加swap交换缓存 (3)“CMake Error at tools/clang/tools/driver/cmake_install.cmake:41 (file): file INSTALL cannot copy file "/home/python/projects/test/cling/tools/packaging/cling-build/builddir/bin/clang-5.0" to "/tmp/cling-obj/bin/clang-5.0".”——目标磁盘空间不足,增加/tmp目录挂载磁盘空间。 (4)“make: *** [install] 错误 1 subprocess.CalledProcessError: Command 'make -j4 install' returned non-zero exit status 2”——这个错误提示可不用理会,前面的错误解决后,这个错误就不会发生了,估计与前面的磁盘空间不足问题相关联。 最终结果: ... [100%] Built target cling [100%] Running the Cling regression tests lit.py: /home/python/projects/test/cling/tools/packaging/cling-build/cling-src/tools/cling/test/lit.cfg:261: note: using cling: '/home/python/projects/test/cling/tools/packaging/cling-build/builddir/./bin/cling' lit.py: /home/python/projects/test/cling/tools/packaging/cling-build/cling-src/tools/cling/test/lit.cfg:272: note: Running tests from build tree Testing Time: 423.23s Expected Passes : 121 Expected Failures : 13 Unsupported Tests : 9 [100%] Built target check-cling #编译基本完成,但不是很理想,有13个测试未通过,但不影响使用。 #在/home/python/projects/test/cling/tools/packaging/cling-build/目录下有一新生成目录"cling-CentOS Linux-7.5.1804-x86_64-0.6~dev-6238cda",应该是编译后的c++核心文件目录 2、配置环境变量,并测试c++环境: (1)添加PATH变量: (ccl353) [python@centos75 bin]$ vi /home/python/.bashrc ... # User specific aliases and functions export PATH=$PATH:/home/python/projects/test/cling/tools/packaging/cling-build/"cling-CentOS Linux-7.5.1804-x86_64-0.6~dev-6238cda"/bin (2)激活环境变量: (ccl353) [python@centos75 bin]$ source /home/python/.bashrc (3)测试c++环境: (ccl353) [python@centos75 bin]$ cd /home/python [python@centos75 ~]$ cling ****************** CLING ****************** * Type C++ code and press enter to run it * * Type .q to exit * ******************************************* [cling]$ #现此界面,表明c++基本可用! 3、安装Jupyter环境下的c++核心(安装说明文档在:/home/python/projects/test/cling/tools/Jupyter/README.md): [python@centos75 ~]$ cd /home/python/projects/test/cling/tools/packaging/cling-build/cling-CentOS Linux-7.5.1804-x86_64-0.6~dev-6238cda/share/cling/Jupyter/kernel (ccl353) [python@centos75 kernel]$ ls cling-cpp11 cling-cpp17 cling.ipynb scripts cling-cpp14 cling-cpp1z clingkernel.py setup.py (ccl353) [python@centos75 kernel]$ pip install -e . 4、注册C++17/C++1z/C++14/C++11的kernelspec: (ccl353) [python@centos75 kernel]$ jupyter-kernelspec install --user cling-cpp17 [InstallKernelSpec] Installed kernelspec cling-cpp17 in /home/python/.local/share/jupyter/kernels/cling-cpp17 (ccl353) [python@centos75 kernel]$ jupyter-kernelspec install --user cling-cpp1z [InstallKernelSpec] Installed kernelspec cling-cpp1z in /home/python/.local/share/jupyter/kernels/cling-cpp1z (ccl353) [python@centos75 kernel]$ jupyter-kernelspec install --user cling-cpp14 [InstallKernelSpec] Installed kernelspec cling-cpp14 in /home/python/.local/share/jupyter/kernels/cling-cpp14 (ccl353) [python@centos75 kernel]$ jupyter-kernelspec install --user cling-cpp11 [InstallKernelSpec] Installed kernelspec cling-cpp11 in /home/python/.local/share/jupyter/kernels/cling-cpp11 (ccl353) [python@centos75 kernel]$ #此时,运行jupyter notebook --no-browser --ip=* --port=8888,浏览器登录notebook,在界面的右部点击new,可以看到新增的c++核心。 4、Jupyter notebook的c++核心运行不稳定的处理: 上述安装完成好,在使用notebook过程发现c++核心不稳定,观察Jupyter notebook服务器的log信息,发现错误提示“RuntimeError: Cannot find /home/python/projects/test/cling/tools/packaging/cling-build/cling-CentOS Linux-7.5.1804-x86_64-0.6~dev-6238cda/lib/libclingJupyter.{so,dylib,dll}”,分析应该是缺少libclingJupyter相关文件导致。回头观察编译过程,发现缺少的文件已在编译过程中生成在/tmp/cling-obj/lib目录下,只是没有拷贝到适当位置。作如下处理: 从目录/tmp/cling-obj/lib拷贝libclingJupyter.so.5.0.0文件到编译结果的lib目录,并做两个软连接文件: (ccl353) [python@centos75 packaging]$ cp /tmp/cling-obj/lib/libclingJupyter.so.5.0.0 /home/python/projects/test/cling/tools/packaging/cling-build/"cling-CentOS Linux-7.5.1804-x86_64-0.6~dev-6238cda"/lib (ccl353) [python@centos75 lib]$ ln -s libclingJupyter.so.5.0.0 libclingJupyter.so.5 (ccl353) [python@centos75 lib]$ ln -s libclingJupyter.so.5 libclingJupyter.so (ccl353) [python@centos75 lib]$ ll 总用量 1144268 drwxrwxr-x 3 python python 4096 8月 22 20:54 clang lrwxrwxrwx 1 python python 20 8月 22 21:32 libclingJupyter.so -> libclingJupyter.so.5 lrwxrwxrwx 1 python python 24 8月 22 21:31 libclingJupyter.so.5 -> libclingJupyter.so.5.0.0 -rwxr-xr-x 1 python python 1171719248 8月 22 21:08 libclingJupyter.so.5.0.0 #经上述处理过程后,jupyter notebook下的c++核心已能稳定运行。 5、小结: jupyter notebook的c++核心支持的安装编译过程超过了我的预期,总体看需要注意几个要点: (1)内存要大(至少4G,实际使用了6G) (2)swap交换缓存要大(实际使用达17G,编译时设置swap空间为30G) (3)/tmp目录空间要大(实际使用达23G,编译过程中专门配置了一块100G磁盘做/tmp挂载盘) (4)编译时间长(实际编译估计在10小时左右,中间涉及编译过程中还要从网上下载文件,编译代码量达G数量级,故时间很长) (5)还有部分工作需要手动操作(如:拷贝libclingJupyter.so.5.0.0等文件) 6、附: 小技巧: (1)编译过程中,可另开终端使用free和df命令观察内存及磁盘使用情况,辅助观察编译过程的资源占用情况。 (2)原机swap交换分区只有1.3G,可通过如下命令增加swap交换空间(应使用root权限): [root@centos75 home]# dd if=/dev/zero of=/home/swapfile bs=1M count=30000 [root@centos75 home]# mkswap /home/swapfile [root@centos75 home]# swapon /home/swapfile [root@centos75 home]# swapon -s 文件名 类型 大小 已用 权限 /dev/sda3 partition 1362940 0 -1 /home/swapfile file 30719996 0 -2
|
请发表评论