• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

欧拉公式C++实现

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

欧拉函数Euler(n):求[2,n]中有多少个数与n互素

直接利用公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn)

其中:

  • pi为x的素因数
  • 每个素因数只用一次
    • 比如90=2 * 3^2 * 5
    • φ(90) = 90 * (1-1/2) * (1-1/3) * (1-1/5)
int Euler(int n) {
    int ans = n;
    for(int i = 2; i * i <= n; ++i) {	//注1
		if(n % i == 0) {	
			ans = ans - ans/i;	//x(1-1/p1)的变形
            while(n % i == 0) n /= i;	//注2
        }
    }
    if(n != 1) ans = ans - ans/i;	//注3
    return n;
}

注1:众所周知,判断因数时不用超过根号n,这跟判断素数的算法是类似的

注2:前面说到了,每个素因数只有一次,但是有的素因数许多很多次幂,比如100=22*52,此时需要把素因数除尽。

​ 其实,代码的实现原理不是像我们手动计算时,先找出所有的素因数然后代入公式。而是“步步蚕食”,有点类似于φ(90)=φ(2) * φ(45) = φ(9) * φ(5) = 6 * 4 = 24,即先把素因数2消掉,然后把素因数3消掉,最后把素因数5消掉。

注3:因为注1的限制,所以我们有的时候会遇到这样的情况,明明还有素因数没有被消掉,就已经跳出了循环,比如90,当我们消掉3之后,n变成了5,此时就会跳出for循环。所以我们才需要注3,来消掉素因数5。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
[转载]C#图片格式(JPG,BMP,PNG,GIF)等转换为ICO图标发布时间:2022-07-13
下一篇:
谈C/C++指针精髓(三)发布时间:2022-07-13
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap