在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。
c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?
下面是实际程序(在VC 6.0环境下通过): #include<stdio.h> int c[10][100];/*对应每种情况的最大价值*/ int knapsack(int m,int n) { int i,j,w[10],p[10]; printf("请输入每个物品的重量,价值:\n"); for(i=1;i<=n;i++) scanf("%d,%d",&w[i],&p[i]); for(i=0;i<10;i++) for(j=0;j<100;j++) c[i][j]=0;/*初始化数组*/ for(i=1;i<=n;i++) for(j=1;j<=m;j++) { if(w[i]<=j) /*如果当前物品的容量小于背包容量*/ { if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
/*如果本物品的价值加上背包剩下的空间能放的物品的价值*/
/*大于上一次选择的最佳方案则更新c[i][j]*/ c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; } else c[i][j]=c[i-1][j]; } return(c[n][m]);
} int main() { int m,n;int i,j; printf("请输入背包的承重量,物品的总个数:\n"); scanf("%d,%d",&m,&n); printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n"); return 0; }
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论