• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言PCA分析

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

学生身体4 项指标的主成份分析 

excel数据

 

学生序号 x1身高 x2体重 x3胸围 x4坐高
1 148 41 72 78
2 139 34 71 76
3 160 49 77 86
4 149 36 67 79
5 159 45 80 86
6 142 31 66 76
7 153 43 76 83
8 150 43 77 79
9 151 42 77 80
10 139 31 68 74
11 140 29 64 74
12 161 47 78 84
13 158 49 78 83
14 140 33 67 77
15 137 31 66 73
16 152 35 73 79
17 149 47 82 79
18 145 35 70 77
19 160 47 74 87
20 156 44 78 85
21 151 42 73 82
22 147 38 73 78
23 157 39 68 80
24 147 30 65 75
25 157 48 80 88
26 151 36 74 80
27 144 36 68 76
28 141 30 67 76
29 139 32 68 73
30 148 38 70 78

复制数据到剪切板

数据读入R软件

 

> d=read.table("clipboard",header=T)
> d
x1身高 x2体重 x3胸围 x4坐高
1 148 41 72 78
2 139 34 71 76
3 160 49 77 86
4 149 36 67 79
5 159 45 80 86
6 142 31 66 76
7 153 43 76 83
8 150 43 77 79
9 151 42 77 80
10 139 31 68 74
11 140 29 64 74
12 161 47 78 84
13 158 49 78 83
14 140 33 67 77
15 137 31 66 73
16 152 35 73 79
17 149 47 82 79
18 145 35 70 77
19 160 47 74 87
20 156 44 78 85
21 151 42 73 82
22 147 38 73 78
23 157 39 68 80
24 147 30 65 75
25 157 48 80 88
26 151 36 74 80
27 144 36 68 76
28 141 30 67 76
29 139 32 68 73
30 148 38 70 78

原始数据标准化
> sd=scale(d)

标准化数据展示 复制到剪切板
> sd
x1身高 x2体重 x3胸围 x4坐高
[1,] -0.1366952 0.35602486 -0.04530114 -0.31999814
[2,] -1.3669516 -0.72752905 -0.23944887 -0.78828809
[3,] 1.5036468 1.59437218 0.92543751 1.55316168
[4,] 0.0000000 -0.41794222 -1.01603978 -0.08585316
[5,] 1.3669516 0.97519852 1.50788070 1.55316168
[6,] -0.9568661 -1.19190930 -1.21018751 -0.78828809
[7,] 0.5467806 0.66561169 0.73128978 0.85072675
[8,] 0.1366952 0.66561169 0.92543751 -0.08585316
[9,] 0.2733903 0.51081827 0.92543751 0.14829182
[10,] -1.3669516 -1.19190930 -0.82189205 -1.25657805
[11,] -1.2302564 -1.50149613 -1.59848297 -1.25657805
[12,] 1.6403419 1.28478535 1.11958524 1.08487173
[13,] 1.2302564 1.59437218 1.11958524 0.85072675
[14,] -1.2302564 -0.88232247 -1.01603978 -0.55414311
[15,] -1.6403419 -1.19190930 -1.21018751 -1.49072302
[16,] 0.4100855 -0.57273564 0.14884659 -0.08585316
[17,] 0.0000000 1.28478535 1.89617616 -0.08585316
[18,] -0.5467806 -0.57273564 -0.43359660 -0.55414311
[19,] 1.5036468 1.28478535 0.34299432 1.78730666
[20,] 0.9568661 0.82040510 1.11958524 1.31901671
[21,] 0.2733903 0.51081827 0.14884659 0.61658177
[22,] -0.2733903 -0.10835539 0.14884659 -0.31999814
[23,] 1.0935613 0.04643802 -0.82189205 0.14829182
[24,] -0.2733903 -1.34670271 -1.40433524 -1.02243307
[25,] 1.0935613 1.43957876 1.50788070 2.02145164
[26,] 0.2733903 -0.41794222 0.34299432 0.14829182
[27,] -0.6834758 -0.41794222 -0.82189205 -0.78828809
[28,] -1.0935613 -1.34670271 -1.01603978 -0.78828809
[29,] -1.3669516 -1.03711588 -0.82189205 -1.49072302
[30,] -0.1366952 -0.10835539 -0.43359660 -0.31999814
attr(,"scaled:center")
x1身高 x2体重 x3胸围 x4坐高
149.00000 38.70000 72.23333 79.36667
attr(,"scaled:scale")
x1身高 x2体重 x3胸围 x4坐高
7.315548 6.460223 5.150717 4.270858

读取标准化数据
> d=read.table("clipboard",header=T)

主成分分析
> pca=princomp(d,cor=T)

碎石图
> screeplot(pca,type="line",main="碎石图",lwd=2)
>

主成分1贡献率较高

求相关矩阵

> dcor=cor(d)

输出

> dcor
               x1身高       x2体重       x3胸围       x4坐高
x1身高 1.0000000 0.8631621 0.7321119 0.9204624
x2体重 0.8631621 1.0000000 0.8965058 0.8827313
x3胸围 0.7321119 0.8965058 1.0000000 0.7828827
x4坐高 0.9204624 0.8827313 0.7828827 1.0000000

相关矩阵的特征向量 特征值
> deig=eigen(dcor)

输出

>deig
$values
[1] 3.54109800 0.31338316 0.07940895 0.06610989

 

$vectors
[,1] [,2] [,3] [,4]
[1,] -0.4969661 0.5432128 -0.4496271 0.5057471
[2,] -0.5145705 -0.2102455 -0.4623300 -0.6908436
[3,] -0.4809007 -0.7246214 0.1751765 0.4614884
[4,] -0.5069285 0.3682941 0.7439083 -0.2323433

 

输出特征值
> deig$values
[1] 3.54109800 0.31338316 0.07940895 0.06610989


> sumeigv=sum(deig$values)
> sumeigv
[1] 4

求前2个主成分的累积方差贡献率
> sum(deig$value[1:2])/4
[1] 0.9636203
> sum(deig$value[1:1])/4
[1] 0.8852745

第一主成份有88.53%的方差贡献率,前两个主成份累计贡献率更高达96.36%,故只需前两个主成份就能很好地概括这组数据.

输出前两个主成分的载荷系数(特征向量)
> pca$loadings[,1:2]
              Comp.1     Comp.2
x1身高 -0.4969661 0.5432128
x2体重 -0.5145705 -0.2102455
x3胸围 -0.4809007 -0.7246214
x4坐高 -0.5069285 0.3682941

-----------------------------------------

z1=-0.4969661 x1+-0.5145705 x2 +-0.4809007x3+-0.5069285x4

z2=0.5432128 x1+-0.2102455 x2 +-0.7246214x3+0.3682941x4

z= 3.54109800/4 z1 + 0.31338316/4 z2=0.8852745 z1 +0.07834579 Z2

=0.8852745(-0.4969661 x1+-0.5145705 x2 +-0.4809007x3+-0.5069285x4)

+0.07834579 (0.5432128 x1+-0.2102455 x2 +-0.7246214x3+0.3682941x4)

 

-----------------------------------------

计算主成分C1和C2的系数b1 和b2:
> deig$values[1]/4;deig$values[2]/4
[1] 0.8852745
[1] 0.07834579

综合得分函数C 为:
C=(b1*C1+b2*C2)/(b1+b2)=0.9187*C1+0.0813*C2

输出前2 个主成分的得分
> s=pca$scores[,1:2]

计算综合得分
> c=s[1:30,1]*0.918696+s[1:30,2]*0.0813

> s[1:30,1]
[1] 0.06990950 1.59526340 -2.84793151 0.75996988 -2.73966777 2.10583168
[7] -1.42105591 -0.82583977 -0.93464402 2.36463820 2.83741916 -2.60851224
[13] -2.44253342 1.86630669 2.81347421 0.06392983 -1.55561022 1.07392251
[19] -2.52174212 -2.14072377 -0.79624422 0.28708321 -0.25151075 2.05706032
[25] -3.08596855 -0.16367555 1.37265053 2.16097778 2.40434827 0.50287468

输出综合得分信息
> cbind(s,c)
          Comp.1       Comp.2           c
[1,] 0.06990950 -0.23813701 0.04486504
[2,] 1.59526340 -0.71847399 1.40715017
[3,] -2.84793151 0.38956679 -2.58471151
[4,] 0.75996988 0.80604335 0.76371262
[5,] -2.73966777 0.01718087 -2.51552502
[6,] 2.10583168 0.32284393 1.96086635
[7,] -1.42105591 -0.06053165 -1.31043961
[8,] -0.82583977 -0.78102576 -0.82219309
[9,] -0.93464402 -0.58469242 -0.90618922
[10,] 2.36463820 -0.36532199 2.14268298
[11,] 2.83741916 0.34875841 2.63507969
[12,] -2.60851224 0.21278728 -2.37913015
[13,] -2.44253342 -0.16769496 -2.25757928
[14,] 1.86630669 0.05021384 1.71865087
[15,] 2.81347421 -0.31790107 2.55888214
[16,] 0.06392983 0.20718448 0.07557617
[17,] -1.55561022 -1.70439674 -1.56770034
[18,] 1.07392251 -0.06763418 0.98110965
[19,] -2.52174212 0.97274301 -2.23763039
[20,] -2.14072377 0.02217881 -1.96487123
[21,] -0.79624422 0.16307887 -0.71824807
[22,] 0.28708321 -0.35744666 0.23468178
[23,] -0.25151075 1.25555188 -0.12898555
[24,] 2.05706032 0.78894494 1.95395431
[25,] -3.08596855 -0.05775318 -2.83976229
[26,] -0.16367555 0.04317932 -0.14685759
[27,] 1.37265053 0.02220972 1.26285420
[28,] 2.16097778 0.13733233 1.99644676
[29,] 2.40434827 -0.48613137 2.16934265
[30,] 0.50287468 0.14734317 0.47396795
>

 排序

[11,] 2.83741916 0.34875841 2.63507969
[15,] 2.81347421 -0.31790107 2.55888214
[29,] 2.40434827 -0.48613137 2.16934265
[10,] 2.3646382 -0.36532199 2.14268298
[28,] 2.16097778 0.13733233 1.99644676
[6,] 2.10583168 0.32284393 1.96086635
[24,] 2.05706032 0.78894494 1.95395431
[14,] 1.86630669 0.05021384 1.71865087
[2,] 1.5952634 -0.71847399 1.40715017
[27,] 1.37265053 0.02220972 1.2628542
[18,] 1.07392251 -0.06763418 0.98110965
[4,] 0.75996988 0.80604335 0.76371262
[30,] 0.50287468 0.14734317 0.47396795
[22,] 0.28708321 -0.35744666 0.23468178
[16,] 0.06392983 0.20718448 0.07557617
[1,] 0.0699095 -0.23813701 0.04486504
[23,] -0.25151075 1.25555188 -0.12898555
[26,] -0.16367555 0.04317932 -0.14685759
[21,] -0.79624422 0.16307887 -0.71824807
[8,] -0.82583977 -0.78102576 -0.82219309
[9,] -0.93464402 -0.58469242 -0.90618922
[7,] -1.42105591 -0.06053165 -1.31043961
[17,] -1.55561022 -1.70439674 -1.56770034
[20,] -2.14072377 0.02217881 -1.96487123
[19,] -2.52174212 0.97274301 -2.23763039
[13,] -2.44253342 -0.16769496 -2.25757928
[12,] -2.60851224 0.21278728 -2.37913015
[5,] -2.73966777 0.01718087 -2.51552502
[3,] -2.84793151 0.38956679 -2.58471151
[25,] -3.08596855 -0.05775318 -2.83976229

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
用R语言的ROC评价决策树和神经网络哪个更优发布时间:2022-07-18
下一篇:
人工智能入门-R语言数据分析与数66发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap