在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
##使用leaflet绘制地铁线路图,要求 ##(1)图中绘制地铁线路 library(dplyr) library(leaflet) library(data.table) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stations <- arrange(stations,line,line_id) lines_color <- data.frame("line"=c(1:13,16),"color"=c("#00008B","#000000","#000000","#000000","#823094","#CF047A","#F3560F","#008CC1","#91C5DB","#C7AFD3","#8C2222","#007a61","#ec91cc","#32D2CA")) pal <- colorFactor(as.character(lines_color$color), domain = stations$line) Shenyang <- leaflet() %>% setView(lng=123.44,lat=41.81,zoom = 11) %>% addProviderTiles("CartoDB.Positron") ## 辅助函数绘制线路 draw_line_add <- function(l_no,line_s_id=NULL){ line_color <- lines_color[lines_color$line==l_no,]$color line_data <- stations[stations$line==l_no,] if(is.null(line_s_id)){ draw_lines <- Shenyang %>% addPolylines(lat=line_data$gps_lat,lng=line_data$gps_lon,color=line_color) }else{ draw_lines <- Shenyang %>% addPolylines(lat=line_data$gps_lat[line_s_id],lng=line_data$gps_lon[line_s_id],color=line_color) } return(draw_lines) } for(l in unique(stations$line)){ line_length <- nrow(stations[stations$line==l,]) Shenyang<- draw_line_add(l_no=l) } stations_no <- nrow(stations) for (i in 1:stations_no) { s <- stations$station[i] stations$lines[i] <- paste(stations[stations$station==s,]$line,sep="",collapse="/") } #添加地铁站名 Shenyang<- Shenyang%>% addCircleMarkers(stations$gps_lon, stations$gps_lat, popup =paste(stations$station,stations$lines,sep=","),color = pal(stations$line), radius=1.5) %>% addLegend(pal=pal,values = stations$line) Shenyang
##(2)各站点展示进站流量(08:00:00-08:05:00间的数据),流量的大小用标记的大小表示,并且提示线路、站点、流量的具体数值。 library(lubridate) library(data.table) library(dplyr) library(sqldf) library(leaflet) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stadata<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\SY-20150401.csv"); stadata$se<-period_to_seconds(hms(stadata$V3)) stadata<-as.data.table(stadata) stadata<-filter(stadata,V6==0 & se>=28800 & se<=29100) getR <- function(quakes) { sapply(quakes$count, function(count) { count/40 }) } stad<-substring(stadata['V4'][,],4) stad<-data.frame(stad); names(stad)[1]<-'station' stations<-stations[order(stations$station),] count<-sqldf("select station, count(*) from stad group by station") s<-merge(count,stations,by="station") names(s)[2]<-c('count') Shenyang %>% addCircleMarkers(s$gps_lon, s$gps_lat, popup =paste(s$station,s$line,sep=","),color = pal(s$line), radius=getR(s),label=as.character(s$count)) %>% addTiles()
##使用plotly绘制(17:00:00-17:05:00)出站流量最多的五个站点的出站流量。 library(lubridate) library(sqldf) library(plotly) stations<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\systation.csv"); stadata<-read.csv("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\R语言\\相关作业文档\\3\\第五次实训课数据\\SY-20150401.csv"); stadata$se<-period_to_seconds(hms(stadata$V3)) stadata<-filter(stadata,V6!=0 & se>=61200 & se<=61500) stad<-substring(stadata['V4'][,],4) stad<-data.frame(stad); names(stad)[1]<-'station' stations<-stations[order(stations$station),] count<-sqldf("select station, count(*) from stad group by station") s<-merge(count,stations,by="station") names(s)[2]<-c('count') s[17,2]<-s[17,2]*2; st<-s[-18,]; st<-st[order(-s$count),]; st<-st[1:5,1:2]; plot_ly(st, x=~station,y=~count)
|
请发表评论