• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言缺失值处理

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

数据缺失有多种原因,而大部分统计方法都假定处理的是完整矩阵、向量和数据框。

缺失数据的分类:

完全随机缺失若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。

随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。

非随机缺失:若缺失数据不属于MCARMAR,则数据为非随机缺失(NMAR) 。

处理缺失数据的方法有很多,但哪种最适合你,需要在实践中检验。

下面一副图形展示处理缺失数据的方法:


处理数据缺失的一般步骤:

1、识别缺失数据

2、检测导致数据缺失的原因

3、删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1、识别缺失数据:

R语言中,NA代表缺失值,NaN代表不可能值,Inf-Inf代表正无穷和负无穷。

在这里,推荐使用is.nais.nanis.finiteis.infinite4个函数去处理。

x<-c(2,NA,0/0,5/0)
#判断缺失值
is.na(x)
#判断不可能值
is.nan(x)
#判断无穷值
is.infinite(x)
#判断正常值
is.finite(x)


推荐一个函数:complete.case()可用来识别矩阵或数据框中没有缺失值的行!

展示出数据中缺失的行(数据集sleep来自包VIM)

sleep[!complete.cases(sleep),]

判断数据集中有多少缺失


针对复杂的数据集,怎么更好的探索数据缺失情况呢?

mice包中的md.pattern()函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格。


备注:0表示变量的列中没有缺失,1则表示有缺失值。

第一行给出了没有缺失值的数目(共多少行)。

第一列表示各缺失值的模式。

最后一行给出了每个变量的缺失值数目。

最后一列给出了变量的数目(这些变量存在缺失值)。

在这个数据集中,总共有38个数据缺失。

图形化展示缺失数据:

aggr(sleep,prop=F,numbers=T)

matrixplot(sleep)


浅色表示值小,深色表示值大,默认缺失值为红色。

marginmatrix(sleep)

上述变量太多,我们可以选出部分变量展示:

x <- sleep[, 1:5]
x[,c(1,2,4)] <- log10(x[,c(1,2,4)])
marginmatrix(x)


为了更清晰,可以进行成对展示:

marginplot(sleep[c("Gest","Dream")])


在这里(左下角)可以看到,Dream和Gest分别缺失12和4个数据。

左边的红色箱线图展示的是在Gest值缺失的情况下Dream的分布,而蓝色箱线图展示的Gest值不缺失的情况下Dream的分布。同样的,Gest箱线图在底部。


2、缺失值数据的处理

行删除法:数据集中含有缺失值的行都会被删除,一般假定缺失数据是完全随机产生的,并且缺失值只是很少一部分,对结果不会造成大的影响。

即:要有足够的样本量,并且删除缺失值后不会有大的偏差!

行删除的函数有na.omit()complete.case()

newdata<-na.omit(sleep)
sum(is.na(newdata))
newdata<-sleep[complete.cases(sleep),]
sum(is.na(newdata))


均值/中位数等填充:这种方法简单粗暴,如果填充值对结果影响不怎么大,这种方法倒是可以接受,并且有可能会产生令人满意的结果。

方法1:

newdata<-sleep
mean(newdata$Dream,na.rm = T)
newdata[is.na(newdata$Dream),"Dream"]<-1.972

方法2:

Hmisc包更加简单,可以插补均值、中位数等,你也可以插补指定值。

library(Hmisc)
impute(newdata$Dream,mean)
impute(newdata$Dream,median)
impute(newdata$Dream,2)

mice包插补缺失数据:链式方程多元插值,首先利用mice函数建模再用complete函数生成完整数据。

下图展示mice包的操作过程:


mice():从一个含缺失值的数据框开始,返回一个包含多个完整数据集对象(默认可以模拟参数5个完整的数据集)

with():可依次对每个完整数据集应用统计建模

pool():将with()生成的单独结果整合到一起

library(mice)
newdata<-sleep
data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)
在这里,m是默认值5,指插补数据集的数量

插补方法是pmm:预测均值匹配,可以用methods(mice)查看其他方法

maxit指迭代次数,seed指设定种子数(和set.seed同义)


概述插补后的数据:

summary(data)


在这上面可以看到数据集中变量的观测值缺失情况,每个变量的插补方法,VisitSequence从左至右展示了插补的变量,预测变量矩阵PredictorMatrix)展示了进行插补过程的含有缺失数据的变量,它们利用了数据集中其他变量的信息。(在矩阵中,行代表插补变量,列代表为插补提供信息的变量, 1
0分别表示使用和未使用。)

查看整体插补的数据:

data$imp

查看具体变量的插补数据:

data$imp$Dream

最后,最重要的是生成一个完整的数据集

completedata<-complete(data)


判断还有没有缺失值,如果没有,结果返回FLASE

anyNA(completedata)

针对以上插补结果,我们可以查看原始数据和插补后的数据的分布情况

library(lattice)
xyplot(data,Dream~NonD+Sleep+Span+Gest,pch=21)

图上,插补值是洋红点呈现出的形状,观测值是蓝色点。


densityplot(data)

图上,洋红线是每个插补数据集的数据密度曲线,蓝色是观测值数据的密度曲线。

stripplot(data, pch = 21)

上图中,0代表原始数据,1-5代表5次插补的数据,洋红色的点代表插补值。

下面我们分析对数据拟合一个线性模型:

完整数据:

library(mice)
newdata<-sleep
data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)
model<-with(data,lm(Dream~Span+Gest))
pooled<-pool(model)
summary(pooled)

fim指的是各个变量缺失信息的比例,lambda指的是每个变量对缺失数据的贡献大小

缺失数据(在运行中,自动会行删除):
lm.fit <- lm(Dream~Span+Gest, data = sleep,na.action=na.omit)
summary(lm.fit)


完整数据集和缺失数据集进行线性回归后,参数估计和P值基本一直。缺失值是完全随机产生的。如果缺失比重比较大的话,就不适合使用行删除法,建议使用多重插补法。

kNN插值法:knnImputation函数使用k近邻方法来填充缺失值。对于需要插值的记录,基于欧氏距离计算k个和它最近的观测。接着将这k个近邻的数据利用距离逆加权算出填充值,最后用该值替代缺失值。

library(DMwR)
newdata<-sleep
knnOutput <- knnImputation(newdata)
anyNA(knnOutput)

head(knnOutput)



目前,处理缺失值还有其他方法:


当前,还有成对删除方法,但已经过时,虽然看起来,成对比较应用了所有的数据,但每次两组比较计算都是用到的不同数据集,这将会最终结果造成一定影响!!!

备注:有什么问题和错误,欢迎提出!

参考:R语言实战

雪晴数据网:http://www.xueqing.tv/cms/article/185


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
《R语言数据挖掘:实用项目解析》——2.4 解读分布和变换发布时间:2022-07-18
下一篇:
R语言学习1发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap