• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 原文链接:http://tecdat.cn/?p=6690

 

在最近的一篇文章中,我描述了一个Metropolis-in-Gibbs采样器,用于估计贝叶斯逻辑回归模型的参数。

 

这篇文章就此问题进行了研究,以展示Rcpp如何帮助克服这一瓶颈。  TLDR:只需用C ++编写log-posterior而不是矢量化R函数,我们就可以大大减少运行时间。 

 

我模拟了与上一篇文章类似的模型中的数据:

 

 

 

对于这个分析,我编写了两个Metropolis-Hastings(MH)采样器:sample_mh()和sample_mh_cpp()。前者使用对数后验编码作为向量化R函数。后者使用C ++(log_post.cpp)中的log-posterior编码,并使用Rcpp编译成R函数。Armadillo库对C ++中的矩阵和向量类很有用。


 因此,在每次迭代中,提出了系数向量。 下面用红线表示链,表示生成数据的参数值。

似乎趋同。平均接受概率在采样运行中收敛到约20%。

 

那么Rcpp实现与R实现相比如何呢?Rcpp的运行时间明显较低。当log-posterior被编码为矢量化R函数时,采样器相对于Rcpp实现运行速度大约慢7倍(样本大小为100)。下图显示了样本大小为100到5000的相对运行时间,增量为500。

 

直观地说,C ++带来了一些效率增益。但很明显,Rcpp是解决代码瓶颈的好方法。

 

非常感谢您阅读本文,有任何问题请在下面留言!

 

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap