• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言之几大常见概率分布

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

1.离散型

(1)0_1分布

为一种特殊的二项分布,略过。

(2)二项分布

抛一枚不均匀的硬币,每次结果为正面的概率为0.33,抛100次,其中恰好有20次的概率为:

dbinom(20, 100, 0.33)

其中,第一个参数表示发生某事件的总次数,第二个参数表示总共试验的次数,第三个参数表示发生一次某事件的概率

二项分布概率分布律图:

plot(dbinom(1 : 100, 100, 0.33), col = "red", main = "二项分布图", xlab = "次数", ylab = "概率")

(3)泊松分布

关于泊松分布,不算特别好理解。可以参考资料:

 http://www.ruanyifeng.com/blog/2013/01/poisson_distribution.html

http://maider.blog.sohu.com/304621504.html

泊松分布主要满足3个条件:

(一)A为小概率事件

(二)A发生概率是稳定的

(三)A与下一次A事件的发生,是相互独立的

一家医院,统计下来平均每分钟接待2个客人,问假设某次一分钟接待4个客人的概率是:

dpois(4, lambda = 2)

其中,参数2为泊松分布公式中的λ * t

泊松分布概率分布律图:

plot(dpois(0:30, lambda = 2), col = "red", xlim = c(-1,30), xlab = "发生次数", ylab = "概率", main = "泊松分布图")

2.连续型

(1)均匀分布

x在[a, b]区间的每一点概率相同,且每一点的概率与x值大小没有任何关系

举例:[-1,1]区间上的均匀分布,在x=0处的概率密度:

dunif(0,-1,1)

其中,参数二为区间最小值,参数三为区间最大值

均匀分布概率密度图:

set.seed(1)
x = seq(-1, 1, length.out = 100)

y = dunif(x, -1, 1)

plot(x, y, col = "red", type = "l", main = "均匀分布概率密度函数", ylab = "概率")

 

(2)正态分布

正态分布是生活中最常见的,男女身高,考试成绩,人的寿命等等都服从正态分布。

假设某班级同学身高服从正态分布,该班级身高平均值为1.65m,方差为2.32,则身高1.70m出现的概率为:

dnorm(1.70, 1.65, 2.32)

其中,参数二为平均值,参数三为方差

正态分布概率密度图:

set.seed(1)
x = seq(-10,15, length.out = 100)
y = dnorm(x, 1.65, 2.32)
plot(x, y, xlim = c(-10, 15), type = "l", col = 'red', xaxs = "i", main = "正态分布概率密度图", xlab = "身高", ylab = "概率")

(3)指数分布

同样不喜欢理解的一种概率分布,指数分布可由泊松分布推导出来,指数分布的区间是[0, +∞),具有无记忆性的特点。

指数分布可以用来表示独立随机事件发生的时间间隔,如旅客进入机场的时间间隔, 设备出故障的时间。

假设某灯泡在单位时间(例如1小时)损坏的概率为0.0168,则在72小时内出现故障的概率为:

pexp(72, 0.0168)

其中参数二为指数密度函数中的λ

指数分布概率密度图:

set.seed(1)
x = seq(0, 90, length.out = 100)
y = dexp(x, 0.0168)

plot(x, y, col = 'red', type = "l", xaxs="i", yaxs="i",xlim = c(0,90), main = "指数分布概率密度图", 

xlab = "时间", ylab = "概率")

未完待续。。。。

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言隐马尔科夫模型HMM识别股市变化分析报告发布时间:2022-07-18
下一篇:
R语言之数据处理常用包发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap