在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
转:http://blog.csdn.net/abcjennifer/article/details/18997587 本文基于R语言进行基本数据统计分析,包括基本作图,线性拟合,逻辑回归,bootstrap采样和Anova方差分析的实现及应用。
1. 基本作图(盒图,qq图)
#basic plot
boxplot(x)
qqplot(x,y)
2. 线性拟合
#linear regression n = 10 x1 = rnorm(n)#variable 1 x2 = rnorm(n)#variable 2 y = rnorm(n)*3 mod = lm(y~x1+x2) model.matrix(mod) #erect the matrix of mod plot(mod) #plot residual and fitted of the solution, Q-Q plot and cook distance summary(mod) #get the statistic information of the model hatvalues(mod) #very important, for abnormal sample detection
3. 逻辑回归
#logistic regression x <- c(0, 1, 2, 3, 4, 5) y <- c(0, 9, 21, 47, 60, 63) # the number of successes n <- 70 #the number of trails z <- n - y #the number of failures b <- cbind(y, z) # column bind fitx <- glm(b~x,family = binomial) # a particular type of generalized linear model print(fitx) plot(x,y,xlim=c(0,5),ylim=c(0,65)) #plot the points (x,y) beta0 <- fitx$coef[1] beta1 <- fitx$coef[2] fn <- function(x) n*exp(beta0+beta1*x)/(1+exp(beta0+beta1*x)) par(new=T) curve(fn,0,5,ylim=c(0,60)) # plot the logistic regression curve
3. Bootstrap采样
# bootstrap # Application: 随机采样,获取最大eigenvalue占所有eigenvalue和之比,并画图显示distribution dat = matrix(rnorm(100*5),100,5) no.samples = 200 #sample 200 times # theta = matrix(rep(0,no.samples*5),no.samples,5) theta =rep(0,no.samples*5); for (i in 1:no.samples) { j = sample(1:100,100,replace = TRUE)#get 100 samples each time datrnd = dat[j,]; #select one row each time lambda = princomp(datrnd)$sdev^2; #get eigenvalues # theta[i,] = lambda; theta[i] = lambda[1]/sum(lambda); #plot the ratio of the biggest eigenvalue } # hist(theta[1,]) #plot the histogram of the first(biggest) eigenvalue hist(theta); #plot the percentage distribution of the biggest eigenvalue sd(theta)#standard deviation of theta #上面注释掉的语句,可以全部去掉注释并将其下一条语句注释掉,完成画最大eigenvalue分布的功能
4. ANOVA方差分析
#Application:判断一个自变量是否有影响 (假设我们喂3种维他命给3头猪,想看喂维他命有没有用) # y = rnorm(9); #weight gain by pig(Yij, i is the treatment, j is the pig_id), 一般由用户自行输入 #y = matrix(c(1,10,1,2,10,2,1,9,1),9,1) Treatment <- factor(c(1,2,3,1,2,3,1,2,3)) #each {1,2,3} is a group mod = lm(y~Treatment) #linear regression print(anova(mod)) #解释:Df(degree of freedom) #Sum Sq: deviance (within groups, and residuals) 总偏差和 # Mean Sq: variance (within groups, and residuals) 平均方差和 # compare the contribution given by Treatment and Residual #F value: Mean Sq(Treatment)/Mean Sq(Residuals) #Pr(>F): p-value. 根据p-value决定是否接受Hypothesis H0:多个样本总体均数相等(检验水准为0.05) qqnorm(mod$residual) #plot the residual approximated by mod #如果qqnorm of residual像一条直线,说明residual符合正态分布,也就是说Treatment带来的contribution很小,也就是说Treatment无法带来收益(多喂维他命少喂维他命没区别)
如下面两图分别是
(左)用 y = matrix(c(1,10,1,2,10,2,1,9,1),9,1)和 (右)y = rnorm(9); 的结果。可见如果给定猪吃维他命2后体重特别突出的数据结果后,qq图种residual不在是一条直线,换句话说residual不再符合正态分布,i.e., 维他命对猪的体重有影响。
|
请发表评论