在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
2.8 筛选反映R函数式语言特性的另一个特征是“筛选”(filtering)。这使我们可以提取向量中满足一定条件的元素。筛选是R中常用的运算之一,因为统计分析往往关注满足一定条件的数据。 查看这段代码,凭直觉想想 “我们的目的是什么?”。可以看出我们要求R提取z中平方大于8的所有元素,然后将这些元素构成的子向量赋值给w。 表达式z*z > 8得出的是布尔值向量。对你而言,弄清楚这个结果如何产生是非常重要的。 换句话说,我们对向量使用函数—它也是向量化的另一个例子,与你看到的其他向量化一样。在本例中,结果是一个布尔值向量。然后用得到的布尔值向量筛选出z中所需的元素: 下一个例子将更有针对性。在这里,我们将再次用z定义提取条件,但接着用该结果从另一个向量y,而不是从z中提取子向量,如下所示: 或者,可以像下面这样写更简洁: 再次强调,这个例子要说的是,我们使用向量z决定筛选另一个向量y的索引。相反,前面的例子是使用z筛选它自身。 2.8.2 使用subset()函数筛选 我们使用前一节提到的普通筛选方法,R会认为“x[5]是未知的,因此其平方是否大于5同样是未知的。”但也许你不希望NA出现在结果中。当你希望在结果中剔除NA值时,使用subset()将免去自己移除NA的麻烦。 结果表明z中的第一、第三和第四元素平方大于8。 计算得到(TRUE,FALSE,TRUE,TRUE)。which()函数简单地报告出在后面的表达式中哪些元素为TRUE。 调用which()产生x中所有1的索引。这些索引将以向量形式给出,然后我们取该向量中的第一个元素,即是第一个1的索引。 |
请发表评论