• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言推荐算法recommenderlab包

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

recommend
li_volleyball
2016年3月20日

library(recommenderlab)
library(ggplot2)
# 
data(MovieLense)
dim(MovieLense)
## [1]  943 1664
MovieLense
## 943 x 1664 rating matrix of class 'realRatingMatrix' with 99392 ratings.
image(sample(MovieLense,500),main="Raw ratings")
qplot(getRatings(MovieLense),binwidth=1,main="histogram of normalized ratings",xlab = "Ratings")
summary(getRatings(MovieLense))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    3.00    4.00    3.53    4.00    5.00
#normalized ratings
qplot(getRatings(normalize(MovieLense,method="Z-score")),main="hist of normalized ratings",xlab="rating")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
summary(getRatings(normalize(MovieLense,method="Z-score")))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4.8520 -0.6466  0.1084  0.0000  0.7506  4.1280
qplot(rowCounts(MovieLense), binwidth=10, main="Movies rated on Average", xlab="# of users", ylab="# of movies rated")
 
qplot(colMeans(MovieLense), binwidth=0.1, main="Mean ratings of Movies", xlab="Rating", ylab="# of movies")
recommenderRegistry$get_entries(dataType="realRatingMatrix")
## $IBCF_realRatingMatrix
## Recommender method: IBCF
## Description: Recommender based on item-based collaborative filtering (real data).
## Parameters:
##    k method normalize normalize_sim_matrix alpha na_as_zero minRating
## 1 30 Cosine    center                FALSE   0.5      FALSE        NA
## 
## $PCA_realRatingMatrix
## Recommender method: PCA
## Description: Recommender based on PCA approximation (real data).
## Parameters:
##   categories method normalize normalize_sim_matrix alpha na_as_zero
## 1         20 Cosine    center                FALSE   0.5      FALSE
##   minRating
## 1        NA
## 
## $POPULAR_realRatingMatrix
## Recommender method: POPULAR
## Description: Recommender based on item popularity (real data).
## Parameters: None
## 
## $RANDOM_realRatingMatrix
## Recommender method: RANDOM
## Description: Produce random recommendations (real ratings).
## Parameters: None
## 
## $SVD_realRatingMatrix
## Recommender method: SVD
## Description: Recommender based on EM-based SVD approximation from package bcv (real data).
## Parameters:
##   approxRank maxiter normalize minRating
## 1         NA     100    center        NA
## 
## $UBCF_realRatingMatrix
## Recommender method: UBCF
## Description: Recommender based on user-based collaborative filtering (real data).
## Parameters:
##   method nn sample normalize minRating
## 1 cosine 25  FALSE    center        NA
scheme <- evaluationScheme(MovieLense, method="split", train=0.9, k=1, given=10, goodRating=4)

scheme
## Evaluation scheme with 10 items given
## Method: 'split' with 1 run(s).
## Training set proportion: 0.900
## Good ratings: >=4.000000
## Data set: 943 x 1664 rating matrix of class 'realRatingMatrix' with 99392 ratings.
algorithms <- list(
  "random items" = list(name="RANDOM", param=list(normalize = "Z-score")),
  "popular items" = list(name="POPULAR", param=list(normalize = "Z-score")),
  "user-based CF" = list(name="UBCF", param=list(normalize = "Z-score", method="Cosine", nn=50, minRating=3)),
  "item-based CF" = list(name="IBCF", param=list(normalize = "Z-score", method="Cosine"))
)
# run algorithms, predict next n movies
results <- evaluate(scheme, algorithms, n=c(1, 3, 5, 10, 15, 20))
## RANDOM run fold/sample [model time/prediction time]
##   1  [0.02sec/1.13sec] 
## POPULAR run fold/sample [model time/prediction time]
##   1  [0.14sec/0.2sec] 
## UBCF run fold/sample [model time/prediction time]
##   1  [0.11sec/52.33sec] 
## IBCF run fold/sample [model time/prediction time]
##   1  [348.01sec/0.66sec]
plot(results, annotate = 1:4, legend="topleft")
 
# See precision / recall
plot(results, "prec/rec", annotate=3)
summary(results)
##               Length Class             Mode
## random items  1      evaluationResults S4  
## popular items 1      evaluationResults S4  
## user-based CF 1      evaluationResults S4  
## item-based CF 1      evaluationResults S4
print(results)
## List of evaluation results for 4 recommenders:
## Evaluation results for 1 folds/samples using method 'RANDOM'.
## Evaluation results for 1 folds/samples using method 'POPULAR'.
## Evaluation results for 1 folds/samples using method 'UBCF'.
## Evaluation results for 1 folds/samples using method 'IBCF'.
library(plyr)
result1<-ldply(avg(results))
head(result1)
##            .id         TP        FP       FN       TN  precision
## 1 random items 0.00000000  1.000000 47.75789 1605.242 0.00000000
## 2 random items 0.05263158  2.947368 47.70526 1603.295 0.01754386
## 3 random items 0.09473684  4.905263 47.66316 1601.337 0.01894737
## 4 random items 0.23157895  9.768421 47.52632 1596.474 0.02315789
## 5 random items 0.32631579 14.673684 47.43158 1591.568 0.02175439
## 6 random items 0.48421053 19.515789 47.27368 1586.726 0.02421053
##        recall         TPR          FPR
## 1 0.000000000 0.000000000 0.0006231881
## 2 0.000420633 0.000420633 0.0018345901
## 3 0.001343461 0.001343461 0.0030535159
## 4 0.002965187 0.002965187 0.0060813035
## 5 0.004276282 0.004276282 0.0091353054
## 6 0.007966717 0.007966717 0.0121507535
result1[,1]<-paste(result1[,1],c(1, 3, 5, 10, 15, 20))
temp_result1<-result1[,c(1,6,7)]
f<-function(p,r){
  return(2*p*r)/(p+r)
}
result1_f<-cbind(result1,f=f(temp_result1[,2],temp_result1[,3]))
head(result1_f)
##               .id         TP        FP       FN       TN  precision
## 1  random items 1 0.00000000  1.000000 47.75789 1605.242 0.00000000
## 2  random items 3 0.05263158  2.947368 47.70526 1603.295 0.01754386
## 3  random items 5 0.09473684  4.905263 47.66316 1601.337 0.01894737
## 4 random items 10 0.23157895  9.768421 47.52632 1596.474 0.02315789
## 5 random items 15 0.32631579 14.673684 47.43158 1591.568 0.02175439
## 6 random items 20 0.48421053 19.515789 47.27368 1586.726 0.02421053
##        recall         TPR          FPR            f
## 1 0.000000000 0.000000000 0.0006231881 0.000000e+00
## 2 0.000420633 0.000420633 0.0018345901 1.475905e-05
## 3 0.001343461 0.001343461 0.0030535159 5.091011e-05
## 4 0.002965187 0.002965187 0.0060813035 1.373350e-04
## 5 0.004276282 0.004276282 0.0091353054 1.860558e-04
## 6 0.007966717 0.007966717 0.0121507535 3.857568e-04
head(result1_f[order(-result1_f$f),])
##                 .id       TP        FP       FN       TN precision
## 18 user-based CF 20 6.094737 12.273684 41.66316 1593.968 0.3381538
## 17 user-based CF 15 4.978947  8.915789 42.77895 1597.326 0.3629917
## 16 user-based CF 10 3.684211  5.684211 44.07368 1600.558 0.3948758
## 12 popular items 20 5.368421 14.631579 42.38947 1591.611 0.2684211
## 11 popular items 15 4.421053 10.578947 43.33684 1595.663 0.2947368
## 15  user-based CF 5 2.157895  2.610526 45.60000 1603.632 0.4532609
##        recall        TPR         FPR          f
## 18 0.16566075 0.16566075 0.007591384 0.11203762
## 17 0.13829264 0.13829264 0.005510458 0.10039817
## 16 0.10324963 0.10324963 0.003508480 0.08154156
## 12 0.12821289 0.12821289 0.009037106 0.06883008
## 11 0.11281484 0.11281484 0.006530564 0.06650138
## 15 0.06796729 0.06796729 0.001609646 0.06161383
#带入模型
moive_re<-Recommender(MovieLense,method="UBCF")
moives_pr<-predict(moive_re,MovieLense,n=20)
print(as(moives_pr,"list"))
## [[1]]
##  [1] "Glory (1989)"                                                               
##  [2] "Schindler's List (1993)"                                                    
##  [3] "Casablanca (1942)"                                                          
##  [4] "Close Shave, A (1995)"                                                      
##  [5] "Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)"
##  [6] "Leaving Las Vegas (1995)"                                                   
##  [7] "One Flew Over the Cuckoo's Nest (1975)"                                     
##  [8] "Rear Window (1954)"                                                         
##  [9] "Heathers (1989)"                                                            
## [10] "L.A. Confidential (1997)"                                                   
## [11] "City of Lost Children, The (1995)"                                          
## [12] "Butch Cassidy and the Sundance Kid (1969)"                                  
## [13] "Titanic (1997)"                                                             
## [14] "Lawrence of Arabia (1962)"                                                  
## [15] "Shine (1996)"                                                               
## [16] "Stand by Me (1986)"                                                         
## [17] "Gandhi (1982)"                                                              
## [18] "To Kill a Mockingbird (1962)"                                               
## [19] "In the Name of the Father (1993)"                                           
## [20] "Harold and Maude (1971)"                                                    
## 
## [[2]]
##  [1] "Boot, Das (1981)"                         
##  [2] "Dead Man Walking (1995)"                  
##  [3] "Lone Star (1996)"                         
##  [4] "Return of the Jedi (1983)"                
##  [5] "Celluloid Closet, The (1995)"             
##  [6] "Casablanca (1942)"                        
##  [7] "Citizen Kane (1941)"                      
##  [8] "Godfather: Part II, The (1974)"           
##  [9] "2001: A Space Odyssey (1968)"             
## [10] "When We Were Kings (1996)"                
## [11] "Diva (1981)"                              
## [12] "Close Shave, A (1995)"                    
## [13] "Tango Lesson, The (1997)"                 
## [14] "Beautiful Thing (1996)"                   
## [15] "Empire Strikes Back, The (1980)"          
## [16] "Mrs. Dalloway (1997)"                     
## [17] "Butch Cassidy and the Sundance Kid (1969)"
## [18] "My Fair Lady (1964)"                      
## [19] "Bonnie and Clyde (1967)"                  
## [20] "Annie Hall (1977)"                        
## 
## [[3]]
##  [1] "Mrs. Brown (Her Majesty, Mrs. Brown) (1997)" 
##  [2] "Star Wars (1977)"                            
##  [3] "Pulp Fiction (1994)"                         
##  [4] "English Patient, The (1996)"                 
##  [5] "Full Monty, The (1997)"                      
##  [6] "Lone Star (1996)"                            
##  [7] "Titanic (1997)"                              
##  [8] "Sweet Hereafter, The (1997)"                 
##  [9] "In the Company of Men (1997)"                
## [10] "Willy Wonka and the Chocolate Factory (1971)"
## [11] "In & Out (1997)"                             
## [12] "Vertigo (1958)"                              
## [13] "As Good As It Gets (1997)"                   
## [14] "Apt Pupil (1998)"                            
## [15] "Dazed and Confused (1993)"                   
## [16] "Ice Storm, The (1997)"                       
## [17] "This Is Spinal Tap (1984)"                   
## [18] "Trainspotting (1996)"                        
## [19] "Heat (1995)"                                 
## [20] "Fargo (1996)"                                
## 
## [[4]]
##  [1] "Titanic (1997)"               "English Patient, The (1996)" 
##  [3] "L.A. Confidential (1997)"     "Game, The (1997)"            
##  [5] "Good Will Hunting (1997)"     "Kiss the Girls (1997)"       
##  [7] "Full Monty, The (1997)"       "Usual Suspects, The (1995)"  
##  [9] "Rosewood (1997)"              "Boogie Nights (1997)"        
## [11] "Raise the Red Lantern (1991)" "Pulp Fiction (1994)"         
## [13] "Toy Story (1995)"             "Love Jones (1997)"           
## [15] "Eve's Bayou (1997)"           "Edge, The (1997)"            
## [17] "Sting, The (1973)"            "Some Like It Hot (1959)"     
## [19] "Strictly Ballroom (1992)"     "Soul Food (1997)"            
## 
## [[5]]
##  [1] "Terminator 2: Judgment Day (1991)"                                          
##  [2] "Terminator, The (1984)"                                                     
##  [3] "Usual Suspects, The (1995)"                                                 
##  [4] "Contact (1997)"                                                             
##  [5] "Braveheart (1995)"                                                          
##  [6] "Casablanca (1942)"                                                          
##  [7] "Twelve Monkeys (1995)"                                                      
##  [8] "Godfather, The (1972)"                                                      
##  [9] "Shawshank Redemption, The (1994)"                                           
## [10] "Raising Arizona (1987)"                                                     
## [11] "Amadeus (1984)"                                                             
## [12] "Nikita (La Femme Nikita) (1990)"                                            
## [13] "Reservoir Dogs (1992)"                                                      
## [14] "Citizen Kane (1941)"                                                        
## [15] "Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)"
## [16] "Schindler's List (1993)"                                                    
## [17] "Titanic (1997)"                                                             
## [18] "Leaving Las Vegas (1995)"                                                   
## [19] "North by Northwest (1959)"                                                  
## [20] "Army of Darkness (1993)" 
#S4 class 是一种标准的R语言面向对象实现方式,s4对象有明确的类定义,参数定义,参数检查,继承关系,实例化等面向对象系统的特征。

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言基础发布时间:2022-07-18
下一篇:
拓端tecdat|R语言使用LOWESS技术图分析逻辑回归中的函数形式发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap