• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

拓端tecdat|R语言中的风险价值模型度量指标TVaR与VaR

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

 

原文链接:http://tecdat.cn/?p=11601

 


 

99%的预期缺口[…]与99.6%的[…]风险值非常接近

受到“ 瑞士经验”报告中一句话的启发,

在99%置信水平[...]上的预期缺口[…]对应于大约99.6%至99.8%的风险价值

 

回顾

 

对于任何(绝对)连续累积分布函数​,严格增加,因为(VaR和TVaR)都是连续的,并且严格增加,所以可以将任何TVaR与某个VaR关联在一起 。即

 与

考虑例如对数正态分布。由于没有关于预期短缺的简单表达式,因此 使用蒙特卡洛模拟对其进行近似。然后,使用累积分布函数获取风险值的关联级别,

> n=1e7
> TVaR_VaR_LN=function(p){
+     X=rlnorm(n)
+     E=mean(X[X>qlnorm(p)])
+     return(plnorm(E))
+ }

例如

> TVaR_VaR_LN(.99)
[1] 0.9967621

为了绘制它,定义

> prob=c(seq(.8,.99,by=.01),.995)
> P_ln=unlist(lapply(prob,TVaR_VaR_LN))

现在,如果考虑尾巴较轻的分布,例如指数分布


> P_exp=unlist(lapply(prob,TVaR_VaR_exp))

或厚尾的分布(如帕累托)

 

我们有不同的概率水平。

 

因此,尾部越重,概率水平越高。因此,在某些情况下,始终用99.6%VaR qppfoximate 99%TVaR可能有效,例如

> TVaR_VaR_exp(.99)
[1] 0.9963071

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言把DataFrame的一行变成向量发布时间:2022-07-18
下一篇:
拓端tecdat|使用R语言对进行空间数据可视化发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap