• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言dplyr包使用入门

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

#tbl对象

使用dplyr包预处理时建议使用tbl_df()函数或tbl_cube()函数或tbl_sql()函数将原数据转换为tbl对象,因为dplyr包用C语言开发,对处理tbl对象是非常迅速的。语法:

tbl_df(src, ...)

tbl_cube(dimensions, measures)

tbl_sql(subclass, src, from, ..., vars = attr(from, 'vars'))

#观测筛选

如果需要将数据集中的某些观测进行筛选的话,可以使用filter()函数,语法如下:

filter(.data, ...)

.data为tbl对象

...为观测筛选条件,类似于subset()函数中的用法,但不同的是filter()函数不能筛选某些变量。

例子:

df <- data.frame(x = c('a','b','c','a','b','e','d','f'), y = c(1,2,3,4,5,6,7,8))

df2tbl <- tbl_df(df)

filter(df2tbl,x %in% c('a','b'))

#变量选取

filter()函数只能将指定条件的观测筛选出来,并不能筛选出只关心的变量,为了弥补这个缺陷,可以使用select()函数筛选指定的变量,而且比subset()函数更灵活,而且选择变量的同时也可以重新命名变量。如果剔除某些变量的话,只需在变量前加上负号“-”。之所以说他比subset()函数灵活,是因为可以在select()函数传递如下参数:

starts_with(x, ignor.case = TRUE)#选择以字符x开头的变量

ends_with(x, ignor.case = TRUE)#选择以字符x结尾的变量

contains(x, ignor.case = TRUE)#选择所有包含x的变量

matches(x, ignor.case = TRUE)#选择匹配正则表达式的变量

num_range('x', 1:5, width = 2)#选择x01到x05的变量

one_of('x','y','z')#选择包含在声明变量中的

everything()#选择所有变量,一般调整数据集中变量顺序时使用

例子:

#将df2tbl数据集中的y变量放到x变量前

select(df2tbl,y,everything())

#筛选变量的同时,重新命名变量名

select(df2tbl, x1 = x, y1 = y)

#重命名变量

如果需要对数据集中的某些变量进行重命名的话,可直接使用rename()函数,语法如下:

rename(tbl, newname = oldname,...)

例子:

rename(df2tbl, x1 = x, y1 = y)

#数据排序

数据预处理过程中往往也需要按某些变量进行排序,dplyr包提供了非常便捷的arrange()函数实现排序功能,语法如下:

arrange(.data, ...)

arrange()函数默认以某个变量进行升序,如需降序则desc(var_name)即可。

例子:

arrange(df2tbl, y) #默认升序

arrange(df2tbl, desc(y)) #降序操作

#数据扩展

通过mulate()函数可以在原始数据集的基础上扩展新变量,类似于transform()函数,语法如下:

mutate(.data, ...)

例子:

mutate(df2tbl, z = y^2 + y - 10)

同样可以进行数据扩展的还有transmute()函数,与mutate()函数不同的是,该函数扩展新变量的同时,将删除所有原始变量。

例子:

transmute(df2tbl, z = y^2 + y - 10)

#数据聚合

在数据库操作中,往往需要进行聚合函数的应用,这里同样可以很方面使用summarize()函数实现数据集聚合操作,语法如下:

summarize(.data, ...)

可以用来聚合的函数有:

min():返回最小值

max():返回最大值

mean():返回均值

sum():返回总和

sd():返回标准差

median():返回中位数

IQR():返回四分位极差

n():返回观测个数

n_distinct():返回不同的观测个数

first():返回第一个观测

last():返回最后一个观测

nth():返回n个观测

例子:

summarize(df2tbl, max(y))

summarize(df2tbl, n())

而且该函数还可以结合group_by()函数实现分组聚合,group_by()函数语法:

group_by(.data, ..., add = FALSE)

例子:

summarize(group_by(df2tbl,x), sum(y))

#数据关连

我们知道,数据库中经常需要将多个表进行连接操作,如左连接、右连接、内连接等,这里dplyr包也提供了数据集的连接操作,具体如下:

inner_join#內连

left_join#左连

right_join#右连

full_join#全连

semi_join#返回能够与y表匹配的x表所有记录

anti_join#返回无法与y表匹配的x表的所记录

例子:

df2 <- data.frame(x = c('a','b','c'), z = c('A','B','C'))

df2tbl2 <- tbl_df(df2)

inner_join(x = df2tbl, y = df2tbl2, by = 'x')

semi_join(x = df2tbl, y = df2tbl2, by = 'x')

anti_join(x = df2tbl, y = df2tbl2, by = 'x')

#数据合并

在R基础包里有cbind()函数和rbind()函数实现按列的方向进行数据合并和按行的方向进行数据合并,而在dplyr包中也添加了类似功能的函数,它们是bind_cols()函数和bind_rows()函数

例子:

mydf1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))

mydf2 <- data.frame(x = c(5,6), y = c(50,60))

mydf3 <- data.frame(z = c(100,200,300,400))

bind_rows(mydf1, mydf2)

bind_cols(mydf1, mydf3)

需要说明的是,bind_rows()函数需要两个数据框或tbl对象有相同的列数,而bind_cols()函数则需要两个数据框或tbl对象有相同的行数。

#管道函数

这里介绍一种dplyr包中特有的管道函数,即通过%>%将上一个函数的输出作为下一个函数的输入。

例子:根据数据集df2tbl和df2tbl2,取出z变量对应的最大y值

inner_join(x = df2tbl, y = df2tbl2, by = 'x') %>% group_by(., z) %>% summarize(., max(y))

#连接数据库数据

如果需要获取MySQL数据库中的数据时,可以直接使用dplyr包中的src_mysql()函数,其功能类似于RMySQL包。src_mysql()函数语法如下:

src_mysql(dbname, host = NULL, port = 0L, user = "root", password = "",

...)

通过以上方式连接MySQL数据库后,使用tbl()函数获取数据集,tbl()函数语法如下:

tbl(src,from = '')

src为src_mysql()函数对象

from为SQL语句

例子:

src <- src_mysql('test', host = 'localhost', user = 'root', password = 'snake')

src

#获取指定表中的数据

tbl(src, from = 'diff')

 

参考资料

每天进步一点点文章:  https://sanwen8.cn/p/13dlTa8.html


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言最小浮点数发布时间:2022-07-18
下一篇:
《R语言编程艺术》——1.4 R语言中一些重要的数据结构发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap