• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

搜狗疫情数据爬取(R语言)

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

想必大家最近都很关心新冠状肺炎,疫情导致春节被延长,高速被封,大家伙基本都是远程办公。

趁着周末,来写个爬虫,获取搜狗疫情提供的数据,爬取各个省份以及各个市区的确诊、治愈和死亡数据。

 
1581827981508.png

网页分析

网页地址为:http://sa.sogou.com/new-weball/page/sgs/epidemic?type_page=WEB,在分析网页时,如果在这里使用浏览器的检查功能,根据标签来写xpath,是无法爬取到数据的。如下图,湖北的数据在div.total标签里面,但在源代码中无法搜索到。而且,read_html是获取网页源码,因此如果根据该标签获取数据,结果肯定为空。

 
1581829059936.png

如果仔细研究一下源码,会发现所有数据都在<script type="text/javascript">,所以xpath=/html/body/script[1]/text()。

<pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="R" cid="n9" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Monaco, Consolas, &quot;Andale Mono&quot;, &quot;DejaVu Sans Mono&quot;, monospace; margin-top: 0px; margin-bottom: 20px; background: rgb(51, 51, 51); font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; white-space: normal; position: relative !important; padding: 10px 10px 10px 30px; width: inherit; color: rgb(184, 191, 198); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">library(rvest)
library(rjson)
url<-"http://sa.sogou.com/new-weball/page/sgs/epidemic?type_page=WEB"
page<-read_html(url)
​
html_dt<-page%>%html_nodes(xpath="//html/body/script[1]/text()")%>%html_text(trim = TRUE)</pre>

数据抽取

如果对html_dt数据查看一下,数据很规整,都是json格式,数据如下(由于数据较多,中间已删除部分),其中包括各个省、市、其他国家的确诊疑似数据以及相关新闻报道。

<pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="json" cid="n12" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Monaco, Consolas, &quot;Andale Mono&quot;, &quot;DejaVu Sans Mono&quot;, monospace; margin-top: 0px; margin-bottom: 20px; background: rgb(51, 51, 51); font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; white-space: normal; position: relative !important; padding: 10px 10px 10px 30px; width: inherit; color: rgb(184, 191, 198); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">> html_dt
[1] "window.type_page = \"WEB\"\n      window.__INITIAL_STATE__ = {\"data\":{\"headerImg\":{\"imgUrl\":\"https://hhyfeed.sogoucdn.com/deploy/js/pages/epidemic/epi_header_8_5b6acb7.jpg\"},\"domesticStats\":{\"timestamp\":1581824835000,\"diagnosed\":68584,\"suspect\":8228,\"death\":1666,\"cured\":9546,\"remark\":[],\"src\":\"people\",\"times\":\"截至2月16日12时42分\",\"yesterdayIncreased\":{\"diagnosed\":2009,\"death\":142,\"cured\":1323,\"manipulateTimestamp\":1581814971840,\"suspect\":1918,\"suspectCompare\":-741}},\"moreAboutVirus\":[\"传染源:该字段已替换为说明2\",\"病毒:该字段已替换为说明1\",\"病毒传播途径:该字段已替换为说明3\",\"易感人群:人群普遍易感。老年人及有基础疾病者感染后病情较重,儿童及婴幼儿也有发病\",\"潜伏期:一般为 3~7 天,最长不超过 14 天,潜伏期内可能存在传染性,其中无症状病例传染性非常罕见\"],\"mapStats\":{\"title\":\"疫情分布\",\"type\":\"mapStats\",\"mapUrl\":\"https://hhyfeed.sogoucdn.com/feed/static/images/epidemic/domestic_map_1161231.png\",\"chartUrl\":\"https://hhyfeed.sogoucdn.com/feed/static/images/epidemic/domestic_chart_0291856.png\",\"provinceDetail\":[\"湖北 确诊 56249 例,治愈 5623 例,死亡 1596 例\",\"广东 确诊 1316 例,疑似 17 例,治愈 444 例,死亡 2 例\",\"河南 确诊 1231 例,治愈 421 例,死亡 13 例\"],\"newChartUrl\":
​
​
\"source\":\"上观新闻\",\"img\":\"[\\\"http://img01.sogoucdn.com/app/a/200883/ca798fc52ff9aded400dd38000590f3c\\\"]\",\"up_time\":\"2020-02-11 08:06:08\"},{\"url\":\"http://sa.sogou.com/sgsearch/sgs_tc_news.php?req=N8k_v32bO0luMYPaVIhIMgc10T75IF3Atfo-NQa_zOY=\",\"title\":\"辟谣 | 宁波驰援湖北医疗人员物资没收到被扣留?真相来了\",\"source\":\"湖北日报\",
​
\"area\":[{\"provinceName\":\"湖北\",\"provinceShortName\":\"湖北\",\"currentConfirmedCount\":49030,\"confirmedCount\":56249,\"suspectedCount\":0,\"curedCount\":5623,\"deadCount\":1596,\"comment\":\"\",\"locationId\":420000,\"cities\":[{\"cityName\":\"武汉\",\"confirmedCount\":39462,\"suspectedCount\":0,\"curedCount\":2915,\"deadCount\":1233},{\"cityName\":\"孝感\",\"confirmedCount\":3201,\"suspectedCount\":0,\"curedCount\":353,\"deadCount\":65},
​
​
[{\"id\":181447,\"createTime\":1581824835000,\"modifyTime\":1581824835000,\"tags\":\"\",\"countryType\":2,\"continents\":\"亚洲\",\"provinceId\":\"6\",\"provinceName\":\"日本\",\"provinceShortName\":\"\",\"cityName\":\"\",\"currentConfirmedCount\":395,\"confirmedCount\":408,\"suspectedCount\":0,\"curedCount\":2,\"deadCount\":1,\"comment\":\"\",\"sort\":0,\"operator\":\"wangjinyuan\",\"locationId\":951002}}"</pre>

对于json数据处理,这里推荐rjson包,处理起来十分方便。

#数据前面包含的这些字符不是josn格式,所以需要用正则表达式删除
json<-sub(\'window.type_page = \"WEB\"\n      window.__INITIAL_STATE__ = \',"",html_dt)
#通过rjson包中的fromJSON,可以将数据转换为list格式
josn_date<-fromJSON(json)
#在对josn_date数据分析,省份与各个市区的数据在josn_date$data$area中
area<-josn_date$data$area
# 省 市 确诊 疑似 治愈 死亡 
​
citytempdate<-c()
provincetempdate<-c()
​
for (i in area) {
 provinceShortName<-i$provinceShortName

 confirmedCount<-i$confirmedCount
 curedCount<-i$curedCount
 deadCount<-i$deadCount
 #首先获取省份数据
 provincetempdate<-c(c(provinceShortName,confirmedCount,curedCount,deadCount),provincetempdate)

 for (j in i$cities) {
 cityName<-j$cityName
 confirmedCount=j$confirmedCount
 curedCount=j$curedCount
 deadCount=j$deadCount
 #获取该省份下所有市区的数据
 citytempdate<-c(c(provinceShortName,cityName,confirmedCount,curedCount,deadCount),citytempdate)
 }
}
​
#各个地区确诊人数、治愈人数、死亡人数 dt_city
​
dt_city<-data.frame(matrix(citytempdate,ncol=5,byrow=TRUE))
colnames(dt_city)<-c("PROVINCESHORTNAME","CITYNAME","CONFIRMEDCOUNT","CUREDCOUNT","DEADCOUNT")
​
#dt_province,省份数据
dt_province<-data.frame(matrix(provincetempdate,ncol=4,byrow=TRUE))
colnames(dt_province)<-c("PROVINCESHORTNAME","CONFIRMEDCOUNT","CUREDCOUNT","DEADCOUNT")
​</pre>

现在就把省和市区的数据爬取到了,具体如下,

head(dt_province)
 PROVINCESHORTNAME CONFIRMEDCOUNT CUREDCOUNT DEADCOUNT
1              西藏              1          1         0
2              澳门             10          3         0
3              青海             18         13         0
4               台@@湾              18          2         0
5              香港             56          1         1
6              宁夏             70         33         0
> head(dt_city)
 PROVINCESHORTNAME   CITYNAME CONFIRMEDCOUNT CUREDCOUNT DEADCOUNT
1              西藏       拉萨              1          1         0
2              青海     海北州              3          2         0
3              青海       西宁             15         11         0
4              宁夏 宁东管委会              1          1         0
5              宁夏     石嘴山              1          1         0
6              宁夏       中卫              3          3         0</pre>

数据存储

我们现在爬取的数据只有当天的数据,如果要做更多的分析,肯定是要把数据存储,当有一定时间长度时,才能有效的进行分析。这里有两个方法,一个是存储在文件中,另外一个是存储在数据库中。

#这里比较推荐readr包中的write_csv
write.csv(dt_city,"epidemic_city20200216.csv")
write.csv(dt_province,"epidemic_province20200216.csv")</pre>

现在我就把数据存储在MySQL数据库中,具体代码如下:

#数据保存至数据库
library(RMySQL)
library(RMariaDB)
#连接数据
con <- dbConnect(MariaDB(), host="127.0.0.1", dbname="epid", user="root", password="1234")
​
#在数据库中,我添加了日期字段,在后续分析时,可以根据该字段查询具体每天数据。
city<-data.frame(dt_city,DT=c(format(Sys.Date(),"%Y%m%d")))
province<-data.frame(dt_province,DT=c(format(Sys.Date(),"%Y%m%d")))
# 插入数据库
dbWriteTable(con,"city_dt",city,overwrite =FALSE,append=TRUE,row.names=FALSE) 
dbWriteTable(con,"province_dt",province,overwrite =FALSE,append=TRUE,row.names=FALSE) </pre>

总结

通过该网页,还可以爬取其他国家的确诊人数、治愈人数和死亡人数,以及下图所示的昨日数据,还可以获取官方辟谣、紧急援助的新闻名称和连接。感兴趣的小伙伴可去尝试一下。

本文所涉及的代码、数据库建表脚本以及数据,均已上传至GitHub,点击阅读原文即可获取。

 
 

转载请注明:

微信公众号:数据志

简书:数据志

博客园:https://www.cnblogs.com/wheng/

CSDN:https://blog.csdn.net/wzgl__wh

GitHub(数据、代码):https://github.com/hellowangheng/datazhi/tree/master/2019-nCoV


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap