• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

【大数据部落】R语言实现:混合正态分布EM最大期望估计法

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
因为近期在分析数据时用到了EM最大期望估计法这个算法,在参数估计中也用到的比较多。然而,发现国内在R软件上实现高斯混合分布的EM的实例并不多,大多数是关于1到2个高斯混合分布的实现,不易于推广,因此这里分享一下自己编写的k个高斯混合分布的EM算法实现请大神们多多指教。并结合EMCluster包对结果进行验算。
      本文使用的密度函数为下面格式:

   对应的函数原型为 em.norm(x,means,covariances,mix.prop)
x为原数据,means为初始均值,covariances为数据的协方差矩阵,mix.prop为混合参数初始值。
使用的数据为MASS包里面的synth.te数据的前两列
x <- synth.te[,-3]
首先安装需要的包,并读取原数据。
install.packages("MASS")
library(MASS)
install.packages("EMCluster")
library(EMCluster)
install.packages("ggplot2")
library(ggplot2)
Y=synth.te[,c(1:2)]
qplot(x=xs, y=ys, data=Y) 
然后绘制相应的变量相关图:
从图上我们可以大概估计出初始的平均点为(-0.7,0.4) (-0.3,0.8)(0.5,0.6)
当然 为了试验的严谨性,我可以从两个初始均值点的情况开始估计
首先输入初始参数:

mustart = rbind(c(-0.5,0.3),c(0.4,0.5))    
covstart = list(cov(Y), cov(Y))
probs = c(.01, .99)

然后编写em.norm函数,注意其中的clusters值需要根据不同的初始参数进行修改,
em.norm = function(X,mustart,covstart,probs){
 
  params = list(mu=mustart, var=covstart, probs=probs)   
  clusters = 2 
  tol=.00001
  maxits=100
  showits=T
  require(mvtnorm)
 
  N = nrow(X)
  mu = params$mu
  var = params$var
  probs = params$probs
  
  
  ri = matrix(0, ncol=clusters, nrow=N)         
  ll = 0                                        
  it = 0                                         
  converged = FALSE                            
  
  if (showits)                                 
    cat(paste("Iterations of EM:", "\n"))
  
  while (!converged & it < maxits) { 
    probsOld = probs
    
    llOld = ll
    riOld = ri
    
   
    # Compute responsibilities
    for (k in 1:clusters){
      ri[,k] = probs[k] * dmvnorm(X, mu[k,], sigma = var[[k]], log=F)
    }
    ri = ri/rowSums(ri)
    
  
    rk = colSums(ri)                             
    probs = rk/N
    for (k in 1:clusters){
      varmat = matrix(0, ncol=ncol(X), nrow=ncol(X))         
      for (i in 1:N){
        varmat = varmat + ri[i,k] * X[i,]%*%t(X[i,])
      }
      mu[k,] = (t(X) %*% ri[,k]) / rk[k]
      var[[k]] =  varmat/rk[k] - mu[k,]%*%t(mu[k,])
      ll[k] = -.5 * sum( ri[,k] * dmvnorm(X, mu[k,], sigma = var[[k]], log=T) )
    }
    ll = sum(ll)
    
     
    parmlistold =  c(llOld, probsOld)            
    parmlistcurrent = c(ll, probs)             
    it = it + 1
    if (showits & it == 1 | it%%5 == 0)         
      cat(paste(format(it), "...", "\n", sep = ""))
    converged = min(abs(parmlistold - parmlistcurrent)) <= tol
  }
  
  clust = which(round(ri)==1, arr.ind=T)       
  clust = clust[order(clust[,1]), 2]           
  out = list(probs=probs, mu=mu, var=var, resp=ri, cluster=clust, ll=ll)
 
结果,可以用图像化来表示:
qplot(x=xs, y=ys, data=Y) 
ggplot(aes(x=xs, y=ys), data=Y) +
   geom_point(aes(color=factor(test$cluster))) 
 

 类似的其他情况这里不呈现了,另外r语言提供了EMCluster包可以比较方便的实现EM进行参数估计和结果的误差分析。
ret <- init.EM(Y, nclass = 2)
em.aic(x=Y,emobj=list(pi = ret$pi, Mu = ret$Mu, LTSigma = ret$LTSigma))#计算结果的AIC
通过比较不同情况的AIC,我们可以筛选出适合的聚类数参数值。(欢迎转载,请注明出处。 )


大数据部落——中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务 :y0.cn/teradat(咨询服务请联系官网客服
QQ:3025393450
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询服务

分享最新的大数据资讯,每天学习一点数据分析,让我们一起做有态度的数据人
微信客服号:lico_9e
QQ交流群:186388004


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言低级绘图函数-axis发布时间:2022-07-18
下一篇:
R语言中aggregate函数整合数据发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap