• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言-主成分分析

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

1.PCA

使用场景:主成分分析是一种数据降维,可以将大量的相关变量转换成一组很少的不相关的变量,这些无关变量称为主成分

  步骤:

  1. 数据预处理(保证数据中没有缺失值)
  2. 选择因子模型(判断是PCA还是EFA)
  3. 判断要选择的主成分/因子数目
  4. 选择主成分
  5. 旋转主成分
  6. 解释结果
  7. 计算主成分或因子的得分

  案例:从USJudgeRatings数据集中有11个变量,如何去减化数据(单个主成分分析)

    1.使用碎石图确定需要提取的主成分个数

1 library(psych)
2 # 1.做出碎石图确定主成分的个数
3 fa.parallel(USJudgeRatings[,-1],fa=\'pc\',n.iter = 100,show.legend = F,main = \'Scree plot with parallel analysis\')

  结论:在特征值大于1的的点附近,都表明保留1个主成分即可

  2.提取主成分

1 # 1.第一个参数是关系矩阵
2 # 2.nfactors指定主成分的个数
3 # 3.rotate指定旋转方法,默认varimax
4 # 4.scores表示是否需要计算主成分得分,默认不需要
5 pc <- principal(USJudgeRatings[,-1],nfactors = 1)
6 pc

  结论:第一主成分与每一个变量高度相关

  3.获取主成分得分

1 pc <- principal(USJudgeRatings[,-1],nfactors = 1,scores = T)
2 head(pc$scores)
3 cor(USJudgeRatings$CONT,pc$scores)

  4.获取相关系数

1 cor(USJudgeRatings$CONT,pc$scores)

  结论:律师和法官的私交和律师的评级没有关系

  案例2:减少女孩身体指标的主成分分析(多个主成分分析)

  1.判断个数

1 fa.parallel(Harman23.cor$cov,n.obs = 203,fa=\'pc\',n.iter = 100,show.legend = F,
2             main = \'Scree plot with parallel analysis\')

  结论:有2个点在水平线1上,所以需要2个主成分

  2.主成分分析

pc2 <- principal(Harman23.cor$cov,nfactors = 2,rotate = \'none\')
pc2

  

  结论:需要对数据旋转作进一步分析

  3.主成分旋转(尽可能对成分去噪)

1 rc <- principal(Harman23.cor$cov,nfactors = 2,rotate = \'varimax\')
2 rc

  4.获取主成分的得分系数

1 round(unclass(rc$weights),2)

  

  结论:可以通过系数*数值来计算出主成分得分

2.EFA

使用场景:探索因子分析发掘数据下一组较少的,无法观测的变量来解释一组可观测变量的相关性

  案例:使用EFA对6个心理学测试来检测参与者的得分

  1.判断需要提取的因子数

1 covariances <- ability.cov$cov
2 correlations <- cov2cor(covariances)
3 fa.parallel(correlations,n.obs = 112,fa=\'both\',n.iter=100,main = \'Scree plots with parallel analysis\')

  结论:需要提取2个因子,因为图形在拐点之上有2个分布

  2.提取公共因子

1 fa <- fa(correlations,nfactors = 2,rotate = \'none\',fm=\'pa\')
2 fa

  结论:2个因子解释了6个心理学测试的60%方差,需要进一步旋转

1 fa.varimax <- fa(correlations,nfactors=2,rotate=\'varimax\',fm=\'pa\')
2 fa.varimax

  结论:阅读和词汇在第一个因子占比较大,画图,积木在第二个因子上成分较大,如果想进一步判断这个各因子是否相关,需要使用斜交旋转提取因子

1 fa.promax <- fa(correlations,nfactors=2,rotate=\'Promax\',fm=\'pa\')
2 fa.promax

  结论:相关性为0.57,相关性很大,如果相关性不大,使用正交旋转即可

  3.计算得分

 1 fsm <- function(oblique) {
 2   if (class(oblique)[2]=="fa" & is.null(oblique$Phi)) {
 3     warning("Object doesn\'t look like oblique EFA")
 4   } else {
 5     P <- unclass(oblique$loading)
 6     F <- P %*% oblique$Phi
 7     colnames(F) <- c("PA1", "PA2")
 8     return(F)
 9   }
10 }
11 
12 fsm(fa.promax)

  5.正交旋转所得因子得分图

 

   结论:词汇和阅读在第一因子上载荷较大,图片,迷宫,积木在第二个因子上载荷较大,普通智力检测在二者的分布较为平均

  6.斜交旋转所生成的因子图

1 fa.diagram(fa.promax,simple = F)

  结论:显示了因子之间的关系,该图比上一张图更为准确

   

    


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言入门:对于boxplot()箱型图的直观理解发布时间:2022-07-18
下一篇:
手把手教你入门R语言(2)发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap