• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言学习之主成分分析法的R实践

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

主成分分析R软件实现程序(一):

>d=read.table("clipboard",header=T) #从剪贴板读取数据

>sd=scale(d)  #对数据进行标准化处理

>sd  #输出标准化后的数据和属性信息,把标准化的数据拷贝到剪贴板备用

>d=read.table("clipboard",header=T)  #从剪贴板读取标准化数据

>pca=princomp(d,cor=T)  #主成分分析函数

>screeplot(pca,type="line",mian="碎石图",lwd=2)  #画出碎石图

从碎石图上可以看出,前两个主成分的方差贡献率比重比较大,下面计算前两个主成分的累积方差贡献率是否超过80%……

>dcor=cor(d) #求相关矩阵

>deig=eigen(dcor)  #求相关矩阵的特征值和特征向量

>deig$values #输出特征值

>sumeigv=sum(deig$values)

>sumeigv   得到k值

>sum(deig$values[1:2])/k #求前两个主成分的累积方差贡献率

>pca$loadings[,1:2]  #输出前2个主成分的载荷系数

观察载荷系数可以得到:主成分C1在……

>deig$values[1]/k;deig$values[2]/k; #计算主成分C1、C2的系数b1、b2

C=(b1*C1+b2*C2)/(b1+b2)=q1*C1+q2*C2

>s=pca$scores[,1:2] #输出前两个主成分的得分

>c=s[1:评价对象的个数,1]*q1+s[1:评价对象的个数,2]*q2

>cbind(s,c)

然后把综合得分c的值从小到大排序,得到最后评价结果。

注意:在这里c的值指的是c的实数的值,并非绝对值。

 

主成分分析R软件实现程序(二):较为简便

在excel中点击复制要读取的文件

>data<-read.table("clipboard",header=T,sep=\'\t\')

>data

>data.pr<-princomp(data,cor=TRUE) #data为数据矩阵或数据框,cor为是否用相关阵,默认为协差阵,scores为是否输出成分得分

>summary(data.pr,loading=TRUE) #loading=TURE选项列出了主成分对应原始变量的系数

  其中:standard deviation 标准偏差 Porportion of Variance 贡献率(方差比例)

       comulative proportion 累计贡献率(累计比例)

画出三种碎石图

>screeplot(data.pr)  #条型

>biplot(data.pr)    #分散型

>screeplot(data.pr,type=("line"))  #线型

 

 

 

主成分分析R软件实现程序(三):作业

首先读取成绩数据

```{r, echo=TRUE}
grade <- read.csv(file.choose(),sep=",",header=T)
```
下面对数据进行标准化处理
```{r, echo=TRUE}
sd_grade <- scale(grade[2:43,2:7]);sd      #对数据进行标准化处理
sd_grade_pcomp <- princomp(sd_grade,cor=T);   #sd_grade_pcomp #主成分分析函数,cor=T为使用相关系数阵来进行分析,默认用协方差阵
summary(sd_grade_pcomp,loadings=TRUE)  

#形成一个总结,内含standard deviation 标准偏差 Porportion of Variance 贡献率(方差比例)comulative proportion 累计贡献率(累计比例)


```

由结果看,前三个主成分的累积贡献方差率已达85%,故可选前三个主成分.


```{r, echo=TRUE}
screeplot(sd_grade_pcomp,type="lines")
p<-predict(sd_grade_pcomp);p
```


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言︱基本函数、统计量、常用操作函数发布时间:2022-07-18
下一篇:
R语言实战(四)回归发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap