• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

(转载)R语言ARIMA时间序利基于R语言的时间序列分析预测

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

原链接: https://www.cnblogs.com/silverangel/p/10132361.html

 
  • 数据来源: R语言自带 Nile 数据集(尼罗河流量)
  • 分析工具:R-3.5.0 & Rstudio-1.1.453
#清理环境,加载包
rm(list=ls())
library(forecast)
library(tseries)
#趋势查看
plot(Nile)

#平稳性检验
#自相关图
acf(Nile)

#偏相关图
pacf(Nile)

#也可以直接用tsdisplay查看
tsdisplay(Nile)

#单位根检验
adf.test(Nile)

  • 从自相关图上看,自相关系数没有快速衰减为0,呈拖尾,单位根检验进一步验证,存在单位根,所以序列为非平稳序列
#做序列差分
#可以用ndiffs判断需要做几阶差分
ndiffs(Nile)

  • 需要做一阶差分
#做一阶差分,然后再进行检验
Nile_diff=diff(Nile,1)
plot(Nile_diff)

acf(Nile_diff)

pacf(Nile_diff)

adf.test(Nile_diff)

#建立模型
(mod=arima(Nile,order=c(0,1,1),method='ML'))

  • 根据acf图和pacf图,拟定为0,1,1
#auto.arima通过选取AIC和BIC最小来选取模型,与根据acf和pacf图建立的模型进行比较
(mod_auto=auto.arima(Nile))

# 残差正态性检验
qqnorm(mod$residuals)
qqline(mod$residuals)

qqnorm(mod_auto$residuals)
qqline(mod_auto$residuals)

# 残差白噪检验
Box.test(mod$residuals,type='Ljung-Box')

Box.test(mod_auto$residuals,type='Ljung-Box')

  • 根据检验结果来看,还是选择根据acf图和pacf图建立的模型比较好
# 进行预测
(pre=forecast(mod,5))

plot(Nile,col='pink')
par(new=T)
plot(pre,col='green')

plot(pre,col='green')

  • 数据来源: R语言自带 Nile 数据集(尼罗河流量)
  • 分析工具:R-3.5.0 & Rstudio-1.1.453
#清理环境,加载包
rm(list=ls())
library(forecast)
library(tseries)
#趋势查看
plot(Nile)

#平稳性检验
#自相关图
acf(Nile)

#偏相关图
pacf(Nile)

#也可以直接用tsdisplay查看
tsdisplay(Nile)

#单位根检验
adf.test(Nile)

  • 从自相关图上看,自相关系数没有快速衰减为0,呈拖尾,单位根检验进一步验证,存在单位根,所以序列为非平稳序列
#做序列差分
#可以用ndiffs判断需要做几阶差分
ndiffs(Nile)

  • 需要做一阶差分
#做一阶差分,然后再进行检验
Nile_diff=diff(Nile,1)
plot(Nile_diff)

acf(Nile_diff)

pacf(Nile_diff)

adf.test(Nile_diff)

#建立模型
(mod=arima(Nile,order=c(0,1,1),method='ML'))

  • 根据acf图和pacf图,拟定为0,1,1
#auto.arima通过选取AIC和BIC最小来选取模型,与根据acf和pacf图建立的模型进行比较
(mod_auto=auto.arima(Nile))

# 残差正态性检验
qqnorm(mod$residuals)
qqline(mod$residuals)

qqnorm(mod_auto$residuals)
qqline(mod_auto$residuals)

# 残差白噪检验
Box.test(mod$residuals,type='Ljung-Box')

Box.test(mod_auto$residuals,type='Ljung-Box')

  • 根据检验结果来看,还是选择根据acf图和pacf图建立的模型比较好
# 进行预测
(pre=forecast(mod,5))

plot(Nile,col='pink')
par(new=T)
plot(pre,col='green')

plot(pre,col='green')


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
机器学习实战 决策树 python3实现 R语言实现(1)发布时间:2022-07-18
下一篇:
R语言中文分词——Rwordseg包加载发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap