• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

拓端数据tecdat|R语言多重比较示例:Bonferroni校正法和Benjamini & Hochberg法 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

原文链接:http://tecdat.cn/?p=21825

原文出处:拓端数据部落公众号

 

假设检验的基本原理是小概率原理,即我们认为小概率事件在一次试验中实际上不可能发生。

 

多重比较的问题

当同一研究问题下进行多次假设检验时,不再符合小概率原理所说的“一次试验”。如果在该研究问题下只要有检验是阳性的,就对该问题下阳性结论的话,对该问题的检验的犯一类错误的概率就会增大。如果同一问题下进行n次检验,每次的检验水准为α(每次假阳性概率为α),则n次检验至少出现一次假阳性的概率会比α大。假设每次检验独立的条件下该概率可增加至


常见的多重比较情景包括:

  • 多组间比较
  • 多个主要指标
  • 临床试验中期中分析
  • 亚组分析

 

控制多重比较谬误(Familywise error rate):Bonferroni矫正

Bonferroni法得到的矫正P值=P×n
Bonferroni法非常简单,它的缺点在于非常保守(大概是各种方法中最保守的了),尤其当n很大时,经过Bonferroni法矫正后总的一类错误可能会远远小于既定α。
 

控制错误发现率:Benjamini & Hochberg法

简称BH法。首先将各P值从小到大排序,生成顺序数
排第k的矫正P值=P×n/k
另外要保证矫正后的各检验的P值大小顺序不发生变化。

 

怎么做检验

R内置了一些方法来调整一系列p值,以控制多重比较谬误(Familywise error rate)或控制错误发现率。

Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。

方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
 
请注意,这些方法只需要调整p值和要比较的p值的数量。这与Tukey或Dunnett等方法不同,Tukey和Dunnett也需要基础数据的变异性。Tukey和Dunnett被认为是多重比较谬误(Familywise error rate)方法。
 
要了解这些不同调整的保守程度,请参阅本文下面的两个图。
 
关于使用哪种p值调整度量没有明确的建议。一般来说,你应该选择一种你的研究领域熟悉的方法。此外,可能有一些逻辑允许你选择如何平衡犯I型错误和犯II型错误的概率。例如,在一项初步研究中,你可能希望保留尽可能多的显著值,来避免在未来的研究中排除潜在的显著因素。另一方面,在危及生命并且治疗费用昂贵的医学研究中,得出一种治疗方法优于另一种治疗方法的结论之前,你应该有很高的把握。

 

 具有25个p值的多重比较示例

  1.  
    ### --------------------------------------------------------------
  2.  
    ### 多重比较示例
  3.  
    ### --------------------------------------------------------------
  4.  
     
  5.  
    Data = read.table(Input,header=TRUE)

按p值排序数据

Data = Data[order(Data$Raw.p),]

检查数据是否按预期的方式排序

执行p值调整并添加到数据框

  1.  
    Data$Bonferroni =
  2.  
          p.adjust(Data$Raw.p,
  3.  
                   method = "bonferroni")
  4.  
     
  5.  
    Data$BH =
  6.  
          p.adjust(Data$Raw.p,
  7.  
                   method = "BH")
  8.  
     
  9.  
    Data$Holm =
  10.  
          p.adjust(Data$ Raw.p,
  11.  
                   method = "holm")
  12.  
     
  13.  
    Data$Hochberg =
  14.  
          p.adjust(Data$ Raw.p,
  15.  
                   method = "hochberg")
  16.  
     
  17.  
    Data$Hommel =
  18.  
          p.adjust(Data$ Raw.p,
  19.  
                   method = "hommel")
  20.  
     
  21.  
    Data$BY =
  22.  
          p.adjust(Data$ Raw.p,
  23.  
                   method = "BY")
  24.  
     
  25.  
    Data
  26.  
     

 

绘制图表

  1.  
    plot(X, Y,
  2.  
    xlab="原始的p值",
  3.  
    ylab="矫正后的P值"
  4.  
    lty=1,
  5.  
    lwd=2

 

调整后的p值与原始的p值的图为一系列的25个p值。虚线表示一对一的线。

 

5个p值的多重比较示例

  1.  
    ### --------------------------------------------------------------
  2.  
    ### 多重比较示例,假设示例
  3.  
    ### --------------------------------------------------------------
  4.  
    Data = read.table(Input,header=TRUE)

执行p值调整并添加到数据帧

  1.  
    Data$Bonferroni =
  2.  
          p.adjust(Data$Raw.p,
  3.  
                   method = "bonferroni")
  4.  
     
  5.  
    Data$BH =
  6.  
          signif(p.adjust(Data$Raw.p,
  7.  
                   method = "BH"),
  8.  
                 4)
  9.  
     
  10.  
    Data$Holm =
  11.  
          p.adjust(Data$ Raw.p,
  12.  
                   method = "holm")
  13.  
     
  14.  
    Data$Hochberg =
  15.  
          p.adjust(Data$ Raw.p,
  16.  
                   method = "hochberg")
  17.  
     
  18.  
    Data$Hommel =
  19.  
          p.adjust(Data$ Raw.p,
  20.  
                   method = "hommel")
  21.  
     
  22.  
    Data$BY =
  23.  
          signif(p.adjust(Data$ Raw.p,
  24.  
                   method = "BY"),
  25.  
                 4)
  26.  
     
  27.  
    Data

 

 

绘制(图表)

  1.  
     
  2.  
     
  3.  
    plot(X, Y,
  4.  
            type="l",
  5.  
     

调整后的p值与原始p值在0到0.1之间的一系列5个p值的绘图。请注意,Holm和Hochberg的值与Hommel相同,因此被Hommel隐藏。虚线表示一对一的线。


最受欢迎的见解

1.Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型

2.基于R语言的疾病制图中自适应核密度估计的阈值选择方法

3.WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

4.R语言回归中的hosmer-lemeshow拟合优度检验

5.matlab实现MCMC的马尔可夫切换ARMA – GARCH模型估计

6.R语言区间数据回归分析

7.R语言WALD检验 VS 似然比检验

8.python用线性回归预测股票价格

9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言:数据筛选match发布时间:2022-07-18
下一篇:
【R语言学习笔记】9. 线性回归及其假设检验发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap