在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
在进行数据挖掘时,我们并不需要将所有的自变量用来建模,而是从中选择若干最重要的变量,这称为特征选择(feature selection)。本文主要介绍基于caret包的rfe()函数的特征选择。 一种算法就是后向选择,即先将所有的变量都包括在模型中,然后计算其效能(如误差、预测精度)和变量重要排序,然后保留最重要的若干变量,再次计算效能,这样反复迭代,找出合适的自变量数目。这种算法的一个缺点在于可能会存在过度拟合,所以需要在此算法外再套上一个样本划分的循环。在caret包中的rfe命令可以完成这项任务。 rfe(x, y, sizes = 2^(2:4), metric = ifelse(is.factor(y), "Accuracy", "RMSE"), maximize = ifelse(metric == "RMSE", FALSE, TRUE), rfeControl = rfeControl(), ...)
rfeControl(functions = NULL, rerank = FALSE, method = "boot", saveDetails = FALSE, number = ifelse(method %in% c("cv", "repeatedcv"), 10, 25), repeats = ifelse(method %in% c("cv", "repeatedcv"), 1, number), verbose = FALSE, returnResamp = "final", p = 0.75, index = NULL, indexOut = NULL, timingSamps = 0, seeds = NA, allowParallel = TRUE) functions method 确定用什么样的抽样方法,默认提升boot,还有cv(交叉验证),LOOCV(留一交叉验证) number folds的数量或重抽样的迭代次数 seeds 每次重抽样迭代时设置的随机种子
在第17个变量后面有 * 号,表明选择17个变量时,其预测精度最高 plot(lmProfile) 可观察到同样结果,如下: 返回最终保留的自变量: 参考: http://topepo.github.io/caret/recursive-feature-elimination.html http://blog.csdn.net/jiabiao1602/article/details/44975741
|
请发表评论