在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
> vars <- c("mpg", "hp", "wt") > head(mtcars[vars]) mpg hp wt Mazda RX4 21.0 110 2.620 Mazda RX4 Wag 21.0 110 2.875 Datsun 710 22.8 93 2.320 Hornet 4 Drive 21.4 110 3.215 Hornet Sportabout 18.7 175 3.440 Valiant 18.1 105 3.460 > 1. 方法云集 > summary(mtcars[vars]) mpg hp wt Min. :10.40 Min. : 52.0 Min. :1.513 1st Qu.:15.43 1st Qu.: 96.5 1st Qu.:2.581 Median :19.20 Median :123.0 Median :3.325 Mean :20.09 Mean :146.7 Mean :3.217 3rd Qu.:22.80 3rd Qu.:180.0 3rd Qu.:3.610 Max. :33.90 Max. :335.0 Max. :5.424 > mystats <- function(x, na.omit=FALSE){ + if (na.omit) + x <- x[!is.na(x)] + m <- mean(x) + n <- length(x) + s <- sd(x) + skew <- sum((x-m)^3/s^3)/n + kurt <- sum((x-m)^4/s^4)/n-3 + return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt)) + } > sapply(mtcars[vars], mystats) mpg hp wt n 32.000000 32.0000000 32.00000000 mean 20.090625 146.6875000 3.21725000 stdev 6.026948 68.5628685 0.97845744 skew 0.610655 0.7260237 0.42314646 kurtosis -0.372766 -0.1355511 -0.02271075 > mpg平均值20.1,标准偏差6.0. 分布呈现右偏(偏度0.6),较正态分布稍平(峰度-0.37)
Hmisc 包安装失败 1)通过Hmisc包中的describe()函数计算描述性统计量 2)通过pastecs包中的stat.desc()函数计算描述性统计量 > vars <- c("mpg", "hp", "wt") > library(pastecs) > stat.desc(mtcars[vars]) mpg hp wt nbr.val 32.0000000 32.0000000 32.0000000 nbr.null 0.0000000 0.0000000 0.0000000 nbr.na 0.0000000 0.0000000 0.0000000 min 10.4000000 52.0000000 1.5130000 max 33.9000000 335.0000000 5.4240000 range 23.5000000 283.0000000 3.9110000 sum 642.9000000 4694.0000000 102.9520000 median 19.2000000 123.0000000 3.3250000 mean 20.0906250 146.6875000 3.2172500 SE.mean 1.0654240 12.1203173 0.1729685 CI.mean.0.95 2.1729465 24.7195501 0.3527715 var 36.3241028 4700.8669355 0.9573790 std.dev 6.0269481 68.5628685 0.9784574 coef.var 0.2999881 0.4674077 0.3041285 psych包中describe()函数计算 非缺失值的数量、平均数、标准差、中位数、截尾均值、绝对中位差、最小值、最大值、值域、偏度、峰度和平均值的标准误。 3)通过psych包中的describe()函数计算描述性统计量 > library(psych) > describe(mtcars[vars]) vars n mean sd median trimmed mad min max range skew kurtosis se mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90 23.50 0.61 -0.37 1.07 hp 2 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00 283.00 0.73 -0.14 12.12 wt 3 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42 3.91 0.42 -0.02 0.17
2. 分组计算描述性统计量 > aggregate(mtcars[vars], by=list(am=mtcars$am), mean) am mpg hp wt 1 0 17.14737 160.2632 3.768895 2 1 24.39231 126.8462 2.411000 > aggregate(mtcars[vars], by=list(am=mtcars$am), sd) am mpg hp wt 1 0 3.833966 53.90820 0.7774001 2 1 6.166504 84.06232 0.6169816 >
使用by()分组计算描述性统计量(失败) doBy包安装失败
使用psych包中的describe.by()分组计算概述统计量 > library(psych) > describe.by(mtcars[vars], mtcars$am) Descriptive statistics by group group: 0 vars n mean sd median trimmed mad min max range skew kurtosis se mpg 1 19 17.15 3.83 17.30 17.12 3.11 10.40 24.40 14.00 0.01 -0.80 0.88 hp 2 19 160.26 53.91 175.00 161.06 77.10 62.00 245.00 183.00 -0.01 -1.21 12.37 wt 3 19 3.77 0.78 3.52 3.75 0.45 2.46 5.42 2.96 0.98 0.14 0.18 -------------------------------------------------------------------- group: 1 vars n mean sd median trimmed mad min max range skew kurtosis se mpg 1 13 24.39 6.17 22.80 24.38 6.67 15.00 33.90 18.90 0.05 -1.46 1.71 hp 2 13 126.85 84.06 109.00 114.73 63.75 52.00 335.00 283.00 1.36 0.56 23.31 wt 3 13 2.41 0.62 2.32 2.39 0.68 1.51 3.57 2.06 0.21 -1.17 0.17 Warning message: describe.by is deprecated. Please use the describeBy function >
通过reshape包分组计算概述统计量 > library(reshape) > dstats <- function(x)(c(n=length(x), mean=mean(x), sd=sd(x))) > dfm <- melt(mtcars, measure.vars=("mpg","hp","wt"), id.vars=c("am","cyl")) Error: unexpected ',' in "dfm <- melt(mtcars, measure.vars=("mpg"," > dfm <- melt(mtcars, measure.vars=c("mpg","hp","wt"), id.vars=c("am","cyl")) > cast(dfm, am+cyl+variable~.,dstats) am cyl variable n mean sd 1 0 4 mpg 3 22.900000 1.4525839 2 0 4 hp 3 84.666667 19.6553640 3 0 4 wt 3 2.935000 0.4075230 4 0 6 mpg 4 19.125000 1.6317169 5 0 6 hp 4 115.250000 9.1787799 6 0 6 wt 4 3.388750 0.1162164 7 0 8 mpg 12 15.050000 2.7743959 8 0 8 hp 12 194.166667 33.3598379 9 0 8 wt 12 4.104083 0.7683069 10 1 4 mpg 8 28.075000 4.4838599 11 1 4 hp 8 81.875000 22.6554156 12 1 4 wt 8 2.042250 0.4093485 13 1 6 mpg 3 20.566667 0.7505553 14 1 6 hp 3 131.666667 37.5277675 15 1 6 wt 3 2.755000 0.1281601 16 1 8 mpg 2 15.400000 0.5656854 17 1 8 hp 2 299.500000 50.2045815 18 1 8 wt 2 3.370000 0.2828427
3. 结果的可视化
|
请发表评论