在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。 Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。 在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。
快问快答每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下: Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。 Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。 我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。
从一个简单的例子出发假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢? 有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:
如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:
或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。
然后我们将上述式子组合起来:
这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,
那么,我们可能就构建了一个更好的模型。 上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题: 1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢? 2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度? 接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。
试着想象一个分类问题请看下图: 从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。
算法的理论基础我们该如何分配观测值的权重呢? 通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。 步骤1:假设一个α(t); 步骤2:得到弱分类器h(t); 步骤3:更新总体分布, 其中, 步骤4:再次运用新的总体分布去得到下一个分类器; 觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 α, 反之则是-1α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢? 步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方; 步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:
案例练习最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。
接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:
在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。
结束语笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。
原文作者:TAVISH SRIVASTAVA 翻译:SDCry!!! 原文链接:http://www.analyticsvidhya.com/blog/2015/09/complete-guide-boosting-methods/ |
请发表评论