• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

R语言方差稳定化变换与线性变换《回归分析与线性统计模型》page96 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请
> rm(list = ls())
> A=read.csv("data96.csv")
> A
   Y      N
1 11 0.0950
2  7 0.1920
3  7 0.0750
4 19 0.2078
5  9 0.1382
6  4 0.0540
7  3 0.1292
8  1 0.0503
9  3 0.0629
> attach(A) #将数据A的列名直接赋为变量

 

plot(N,Y) #绘制散点图
lm.air=lm(Y~N) #线性回归
summary(lm.air)

 

 

 

e.norm1=(e-mean(e))/sqrt((sum(e^2))/(n-2)) #计算标准化残差 //scale()函数将一组数据进行中心化、标准化 但是我觉得不能用于求标准化残差
plot(Y,e.norm1,ylab = "标准化残差") #绘制标准化残差关于响应变量Y的散点图

  

 

 从这个图看出残差随着N的增大而增大,因此似乎违背了方差齐性的假定。因为损害事故数可能是一个泊松分布,其方差与均值成比例。

由于可能是泊松分布,泊松分布的方差与均值有一次比例关系,所以为了保证方差齐性假定,我们做平方根变换。

Z=sqrt(Y) 
plot(N,Z) #绘制散点图
lm.air1=lm(Z~N) #线性回归
summary(lm.air1)

e1=lm.air1$resid
e.norm1=(e1-mean(e1))/sqrt((sum(e1**2))/(n-2)) #标准化残差

plot(Z,e.norm1,ylab = "标准化残差") #绘制标准化残差关于响应变量sqrt(Y)的散点图 

  

 

 

 

 

 


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
R语言可视化学习笔记之ggrepel包发布时间:2022-07-18
下一篇:
解密R语言函数的环境空间发布时间:2022-07-18
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap