在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
原文链接:http://tecdat.cn/?p=13839
考虑数据集 线性模型
假设残差独立且具有相同的方差。如果我们可视化线性回归,会看到:
这里的想法(在GLM中)是假设
它将基于某些误差项生成与先前描述的模型相同的模型。该模型可以在下面看到,
这里确实有两部分:平均值的线性增加 另一方面,如果我们假设泊松回归, 我们有这样的结果
有两件事同时发生了变化:我们的模型不再是线性的,而是指数的
如果改编前面的代码,我们得到
问题是,当我们从线性模型引入Poisson回归时,我们改变了两件事。因此,让我们看看当我们分别更改两个组件时会发生什么。首先,我们可以使用高斯模型来更改链接函数,但是这次是乘法模型(具有对数链接函数)
这次是非线性的。或者我们可以在Poisson回归中更改链接函数,以获得线性模型,但异方差
因此,这基本上就是GLM的目的。
|
请发表评论