在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
对于许多模型,如物流模型,没有共轭先验 - 所以Gibbs不适用。正如我们在第一篇文章中看到的那样,蛮力网格方法太慢而无法扩展到真实环境。 这篇文章展示了我们如何使用Metropolis-Hastings(MH)从每个被阻挡的Gibbs迭代中的非共轭条件后验中进行采样 - 这是一种比网格方法更好的替代方案。 模型 该示例的模拟数据是患者的横截面数据集。有一个二元结果,一个二元治疗变量,和一个混淆年龄。年龄是一个分类变量,有3个级别。我使用2个假人控制它(一个类别作为参考)。我用贝叶斯逻辑回归建模:
以上,假设已知。注意我用来表示1000×4模型矩阵并表示4×1参数向量。我还在已知的超参数之前放置了反伽马。对于Metropolis-in-Gibbs来说,这是一个相当现实的激励示例:
非标准化的后验条件让我们来看看这个模型的(非标准化的)条件后验。我不会进行推导,但它遵循我以前的帖子中使用的相同程序。 这里没有共轭!这种条件分布不是已知的分布,因此我们不能简单地使用Gibbs从中进行采样。相反,在每个gibbs迭代中,我们需要另一个采样步骤来从这个条件后验中抽取。第二个采样器将是MH采样器。如果您需要更新Gibbs,请参阅上面链接的上一篇文章。 旁注:条件后验 是共轭的。因此,在每个Gibbs迭代中,我们可以使用标准函数从反伽马中进行采样。这里不需要第二个采样步骤。唷! MH采样目标是从中抽样。请注意,这是一个四维密度。为了简化说明,假设我们只有一个,并且它的条件密度是单峰的。MH采样器的工作原理如下:
因此,总是接受产生更高条件后验评估的提议。然而,有时只接受密度评估较低的建议 - 提案的相对密度评估越低,其接受概率越低(直观!)。经过多次迭代,接受来自后部高密度区域的抽取,并且接受的建议序列“爬上”到高密度区域。一旦序列到达这个高密度区域,它往往会留在那里。因此,在许多方面,您可以将MH视为随机“爬山”算法。 我们有一个协方差矩阵,而不是标量方差参数。因此,我们的提议是系数的向量。在这个意义上,我们运行一个被阻挡的Gibbs - 使用MH在每次迭代中绘制整个系数块。
结果
还有一些改进的余地:
关于贝叶斯范式的好处是所有推理都是使用后验分布完成的。系数估计现在是对数尺度,但如果我们想要优势比,我们只是对后抽取进行取幂。如果我们想要比值比的区间估计,那么我们可以抓住指数后抽取的2.5和97.5百分位数。就这么简单 - 没有delta-method垃圾。 之前我曾提到MH是昂贵的,因为每次Gibbs迭代必须对log后验进行两次评估。下面是使用R包profviz进行的配置文件分析。for循环运行Gibbs迭代。在每个Gibbs迭代中,我调用函数rcond_post_beta_mh(),它使用MH从参数向量的条件后验产生绘制。请注意,它占用了大部分运行时。
潜入rcond_post_beta_mh(),我们看到子程序log_cond_post_beta()是MH运行的瓶颈。该函数是β向量的对数条件后验密度,其被评估两次。
非常感谢您阅读本文,有任何问题请在下面留言!
|
请发表评论