作者简介Introductiontaoyan:伪码农,R语言爱好者,爱开源。
个人博客: https://ytlogos.github.io/
往期回顾
R语言学习笔记之聚类分析
R语言可视化学习笔记之ggpubr包
R语言可视化学习笔记之添加p-value和显著性标记
基于ggplot2包以及corrplot包的相关矩阵可视化包ggcorrplot,ggcorrplot包提供对相关矩阵重排序以及在相关图中展示显著性水平的方法,同时也能计算相关性p-value
安装方法就不提了,不懂的可以浏览我以前的文章(可戳链接)
library(ggcorrplot)
#计算相关矩阵(cor()计算结果不提供p-value)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])
#用ggcorrplot包提供的函数cor_pmat()
p.mat <- cor_pmat(mtcars)
head(p.mat[, 1:4])
可视化相关性矩阵
ggcorrplot(corr)#method默认为square
#方法为circle
ggcorrplot(corr, method = "circle")
#重排矩阵,使用分等级聚类
ggcorrplot(corr, hc.order = TRUE, outline.color = "white")
#控制矩阵形状
ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white")#下三角形
#上三角形
ggcorrplot(corr, hc.order = TRUE, type = "upper", outline.color = "white")
#更改颜色以及主题
ggcorrplot(corr, hc.order = TRUE, type = "lower", outline.color = "white",
ggtheme = ggplot2::theme_gray, colors = c("#6D9EC1", "white", "#E46726"))
#添加相关系数
ggcorrplot(corr, hc.order = TRUE, type = "lower", lab = TRUE)
#增加显著性水平,不显著的话就不添加了
ggcorrplot(corr, hc.order = TRUE, type = "lower", p.mat = p.mat)
#将不显著的色块设置成空白
ggcorrplot(corr, p.mat = p.mat, hc.order=TRUE, type = "lower", insig = "blank")
往期精彩内容整理合集 2017年R语言发展报告(国内)
R语言中文社区历史文章整理(作者篇)
R语言中文社区历史文章整理(类型篇)
公众号后台回复关键字即可学习
回复 R R语言快速入门及数据挖掘
回复 Kaggle案例 Kaggle十大案例精讲(连载中)
回复 文本挖掘 手把手教你做文本挖掘
回复 可视化 R语言可视化在商务场景中的应用
回复 大数据 大数据系列免费****
回复 量化投资 张丹教你如何用R语言量化投资
回复 用户画像 京东大数据,揭秘用户画像
回复 数据挖掘 常用数据挖掘算法原理解释与应用
回复 机器学习 人工智能系列之机器学习与实践
回复 爬虫 R语言爬虫实战案例分享
请发表评论